×

On the structure of weak solutions to scalar conservation laws with finite entropy production. (English) Zbl 1486.35294

The author studies properties of weak solutions with finite entropy production to multidimensional scalar conservation laws \(\partial_t u + \mathrm{div}_x F(u)=0\), \(u=u(t,x)\), \(x\in\mathbb{R}^d\), \(t\in (0,T)\). Based on the kinetic formulation, it is established under suitable nonlinearity assumption on the flux vector \(F\) that the set of non Lebesgue points of \(u\) has Hausdorff dimension at most \(d\). The author also introduces a notion of Lagrangian representation, which allows to give a new interpretation of the entropy dissipation measure.

MSC:

35L65 Hyperbolic conservation laws
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35L03 Initial value problems for first-order hyperbolic equations

References:

[1] Ambrosio, L.; De Lellis, C., A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations, J. Hyperbolic Differ. Equ., 1, 4, 813-826 (2004) · Zbl 1071.35032 · doi:10.1142/S0219891604000263
[2] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), Clarendon Press: Oxford Science Publications, Clarendon Press · Zbl 0957.49001
[3] Ambrosio, L., Kirchheim, B., Lecumberry, M., Rivière, T.: On the rectifiability of defect measures arising in a micromagnetics model. Nonlinear problems in mathematical physics and related topics, II, 29-60, Int. Math. Ser. (N. Y.), 2, Kluwer/Plenum, New York (2002) · Zbl 1055.49008
[4] Ambrosio, Luigi, Transport equation and Cauchy problem for \(BV\) vector fields, Invent. Math., 158, 2, 227-260 (2004) · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[5] Bianchini, S., Bonicatto,P., Marconi, E.: A lagrangian approach to multidimensional conservation laws. preprint SISSA 36/MATE (2017) · Zbl 1405.35109
[6] Bellettini, G.; Bertini, L.; Mariani, M.; Novaga, M., \( \Gamma \)-entropy cost for scalar conservation laws, Arch. Ration. Mech. Anal., 195, 261-309 (2010) · Zbl 1191.35172 · doi:10.1007/s00205-008-0197-2
[7] Bianchini, S.; Daneri, S., On Sudakov’s type decomposition of transference plans with norm costs, Mem. Amer. Math. Soc., 251, 1197, 112 (2018) · Zbl 1454.49002
[8] Bianchini, S., Marconi, E.: On the structure of \(L^\infty\) entropy solutions to scalar conservation laws in one-space dimension-entropy solutions to scalar conservation laws in one-space dimension. Archive for Rational Mechanics and Analysis, (2017) · Zbl 1388.35126
[9] Brenier, Y., Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21, 6, 1013-1037 (1984) · Zbl 0565.65054 · doi:10.1137/0721063
[10] Cheng, KS, A regularity theorem for a nonconvex scalar conservation law, J. Differ. Equat., 61, 1, 79-127 (1986) · Zbl 0545.34005 · doi:10.1016/0022-0396(86)90126-9
[11] Crippa, G.; Otto, F.; Westdickenberg, M., Regularizing Effect of Nonlinearity in Multidimensional Scalar Conservation Laws (2008), UMI, Bologna: Springer-Verlag, Berlin, UMI, Bologna · Zbl 1155.35400
[12] Dafermos, CM, Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A, 99, 3-4, 201-239 (1985) · Zbl 0616.35054 · doi:10.1017/S0308210500014256
[13] Dafermos, CM, Continuous solutions for balance laws, Ric. Mat., 55, 1, 79-91 (2006) · Zbl 1220.35094 · doi:10.1007/s11587-006-0006-x
[14] Dafermos, CM, Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2016), Berlin: Springer-Verlag, Berlin · Zbl 1364.35003
[15] De Lellis, C.; Otto, F.; Westdickenberg, M., Structure of entropy solutions for multi-dimensional scalar conservation laws, Arch. Ration. Mech. Anal., 170, 2, 137-184 (2003) · Zbl 1036.35127 · doi:10.1007/s00205-003-0270-9
[16] De Lellis, C.; Rivière, T., The rectifiability of entropy measures in one space dimension, J. Math. Pures Appl., 82, 10, 1343-1367 (2003) · Zbl 1037.35044 · doi:10.1016/S0021-7824(03)00061-8
[17] Gess, B., Lamy, X.: Regularity of solutions to scalar conservation laws with a force. Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(2):505-521 (2019) · Zbl 1447.35219
[18] Golse, F.; Perthame, B., Optimal regularizing effect for scalar conservation laws, Rev. Mat. Iberoam., 29, 4, 1477-1504 (2013) · Zbl 1288.35343 · doi:10.4171/RMI/765
[19] Kružkov, S.N. (1970) First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (123):228-255 · Zbl 0202.11203
[20] Lamy, X.; Otto, F., On the regularity of weak solutions to Burgers’ equation with finite entropy production, Calc. Var. Partial Differ. Equat., 57, 4, 19 (2018) · Zbl 1409.35139
[21] Lions, P-L; Perthame, B.; Tadmor, E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7, 1, 169-191 (1994) · Zbl 0820.35094 · doi:10.1090/S0894-0347-1994-1201239-3
[22] Mariani, MÂ, Large deviations principles for stochastic scalar conservation laws, Probab. Theory Related Fields, 147, 3-4, 607-648 (2010) · Zbl 1204.60057 · doi:10.1007/s00440-009-0218-6
[23] Marconi, E., Regularity estimates for scalar conservation laws in one space dimension, J. Hyperbolic Differ. Equ., 15, 4, 623-691 (2018) · Zbl 1437.35492 · doi:10.1142/S0219891618500200
[24] Oleĭnik, OA, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl., 2, 26, 95-172 (1963) · Zbl 0131.31803
[25] Silvestre, L., Oscillation properties of scalar conservation laws, Comm. Pure Appl. Math., 72, 6, 1321-1348 (2019) · Zbl 1428.35215 · doi:10.1002/cpa.21804
[26] Tadmor, E.; Tao, T., Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm. Pure Appl. Math., 60, 10, 1488-1521 (2007) · Zbl 1131.35004 · doi:10.1002/cpa.20180
[27] Villani, C., Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2009), Berlin: Springer-Verlag, Berlin · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.