×

Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. (English) Zbl 1377.76016

Summary: Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. The objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin-Helmholtz (KH) instabilities. Historical efforts to study these instabilities are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion. Early experimental efforts are described, and analytical attempts to model the linear, and nonlinear regimes of these mixing layers are examined. These analytical efforts include models for both single-mode and multi-mode initial conditions, as well as multi-scale models to describe the evolution. Comparisons of these models and theories to experimental and simulation studies are then presented. Next, attention is paid to the issue of the influence of stabilizing mechanisms (e.g., viscosity, surface tension, and diffuse interface) on the evolution of these instabilities, as well as the limitations and successes of numerical methods. Efforts to study these instabilities and mixing layers using group-theoretic ideas, as well as more formal notions of turbulence cascade processes during the later stages of the induced mixing layers, are inspected. A key element of the review is the discussion of the late-time self-similar scaling for the RT and RM growth factors, \(\alpha\) and \(\theta\). These parameters are influenced by the initial conditions and much of the observed variation can be explained by this. In some cases, these instabilities induced flows can transition to turbulence. Both the spatial and temporal criteria to achieve the transition to turbulence have been examined. Finally, a description of the energy-containing scales in the mixing layers, including energy “injection” and cascade processes are presented in greater detail. Part II of this review is designed to provide a much broader and in-depth understanding of this critical area of research [the author, ibid. 723–725, 1–160 (2017; Zbl 1377.76017)].

MSC:

76E09 Stability and instability of nonparallel flows in hydrodynamic stability
76E15 Absolute and convective instability and stability in hydrodynamic stability
76E17 Interfacial stability and instability in hydrodynamic stability
82D10 Statistical mechanics of plasmas
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76F25 Turbulent transport, mixing

Citations:

Zbl 1377.76017

Software:

MAH-3; PARAMESH; FLASH
Full Text: DOI

References:

[1] Abakumov, A. I., Studies of film effects on the turbulent mixing zone evolution in shock tube experiments, (Young, R.; Glimm, J.; Boston, B., Proc. 5th Int. Workshop on Compressible Turbulent Mixing (1996), Singapore: Singapore World Scientific), 118
[2] Abarzhi, S. I., Stable steady flows in Rayleigh-Taylor instability, Phys. Rev. Lett., 81, 337 (1998)
[3] Abarzhi, S. I., Regular and singular late-time asymptotes of potential motion of fluid with a free-boundary, Phys. Fluids, 12, 3112 (2000) · Zbl 1184.76015
[4] Abarzhi, S. I., On fundamentals of Rayleigh-Taylor turbulent mixing, Europhys. Lett., 91, 35001 (2010)
[5] Abarzhi, S. I., Review of theoretical modeling approaches of Rayleigh-Taylor instabilities and turbulent mixing, Phil. Trans. R. Soc. A, 368, 1809 (2010) · Zbl 1192.76003
[6] Abarzhi, S. I.; Rosner, R., A comparative study of approaches for modeling Rayleigh-Taylor turbulent mixing, Phys. Scr. T, 142, 014012 (2010)
[7] Abarzhi, S. I.; Nishihara, K.; Glimm, J., Rayleigh-Taylor and Richtmyer-Meshkov instabilities for fluids with finite density ratio, Phys. Lett. A, 317, 470 (2003) · Zbl 1058.76555
[8] Abd-El-Fattah, A. M.; Henderson, L. F., Shock waves at a fast slow interface, J. Fluid Mech., 86, 15 (1978)
[9] Abd-El-Fattah, A. M.; Henderson, L. F., Shock waves at a slow fast gas interface, J. Fluid Mech., 89, 79 (1978)
[10] Abd-El-Fattah, A. M.; Henderson, L. F.; Lozzi, A., Precursor shock waves at a slow-fast gas interface, J. Fluid Mech., 76, 157 (1976) · Zbl 0345.76037
[11] (Abramovitz, M.; Stegun, I., HandBook of Mathematical Functions (1968), Dover: Dover New York)
[12] Abzaev, F. M.; Bel’kov, S. A.; Bessarab, A. V., Investigations on the indirect (X ray) irradiation of high-aspect shell micro-targets at the Iskra-5 facility, Zh. Eksp. Teor. Fiz., 114, 1993 (1998)
[13] Adams, C. S.; Moser, A. L.; Hsu, S. C., Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects, Phys. Rev. E, 92, 051101 (2015)
[14] Adkins, J. F.; Mcintyre, K.; Schrag, D. P., The salinity temperature and \(\delta^{18} O\) of the glacial deep ocean, Science, 298, 1769 (2002)
[15] Adkins, R.; Shelton, E. M.; Renoult, M.-C.; Carles, P.; Rosenblatt, C., Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities, Phys. Rev. Fluids, 2, 062001 (2017)
[16] Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Pawley, C. J.; Schmitt, A. J.; Obenschain, S. P.; Mostovych, A. N.; Gardner, J. H.; Metzler, N., Direct observation of mass oscillations due to ablative Richtmyer-Meshkov instability in plastic targets, Phys. Rev. Lett., 87, 265001 (2001)
[17] Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Pawley, C. J.; Schmitt, A. J.; Obenschain, S. P.; Mostovych, A. N.; Gardner, J. H.; Metzler, N., Direct observation of mass oscillations due to ablative Richtmyer-Meshkov instability and feedout in planar plastic targets, Phys. Plasmas, 9, 2264 (2002)
[18] Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Metzler, N.; Zalesak, S. T.; Schmitt, A. J.; Phillips, L.; Gardner, J. H.; Serlin, V.; Weaver, J. L.; Obenschain, S. P., Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions, Phil. Trans. R. Soc. A, 368, 1739 (2010)
[19] Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Nikitin, S. P.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J., Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target, Phys. Plasmas, 19, 102707 (2012)
[20] Al’bikov, Z. A.; Velikhov, E. P.; Veretennikov, A. I.; Glukhikh, V. A.; Grabovskii, E. V.; Grjaznov, G. M.; Gusev, O. A., Experimental complex ‘Angara-5-1’, Soviet Atom Energ., 68, 34 (1990)
[21] Alder, B. J.; Wainwright, T. E., Phase transition for a hard sphere system, J. Chem Phys., 27, 1208 (1957)
[22] Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gribov, A. N.; Gritsuk, A. N.; Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M.; Sasorov, P. V.; Frolov, I. N., Study of the implosion characteristics of quasi-spherical wire arrays on the Angara-5-1 facility at currents of up to 4 MA, Plasma Phys. Rep., 38, 315 (2012)
[23] Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Medovshchikov, S. F.; Oleinik, G. M.; Rupasov, A. A.; Frolov, I. N., Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility, Plasma Phys. Rep., 42, 1091 (2016)
[24] Aleshin, A. N.; Gamalii, E. G.; Zaitsev, S. G.; Lazareva, E. V.; Lebo, I. G.; Rozanov, V. B., Nonlinear and transitional states in the onset of the Richtmyer-Meshkov instability, Sov. Tech. Phys Lett., 14, 466 (1988)
[25] Aleshin, A. N.; Lazareva, E. V.; Zaitsev, S. G.; Rozanov, V. B.; Gamali, E. G.; Lebo, I. G., Linear, nonlinear and transient stages in development of Richtmyer-Meshkov instability, Sov. Phys. Dokl., 35, 159 (1990)
[26] Aleshin, A. N.; Lazareva, E. V.; Chebotareva, E. I.; Sergeev, S. V.; Zaytsev, S. G., Investigation of Richtmyer-Meshkov instability induced by the incident and the reflected shock waves, (Jourdan, G.; Houas, L., Proceedings of The Sixth international Workshop on Compressible Turbulent Mixing, Marseille, 1997 (1997), IUSTI Universite‘ de Provence: IUSTI Universite‘ de Provence France), 1
[27] Allred, J. C.; Blount, G. H., Experimental Studies of Taylor Instability, Los Alamos Scientific Laboratory Report LA-1600 (1953)
[28] Almarcha, C.; Trevelyan, P. M.J.; Grosfils, P.; De Wit, A., Chemically driven hydrodynamic instabilities, Phys. Rev. Lett., 104, 044501 (2010)
[29] Almgren, A. S.; Bell, J. B.; Rendleman, C. A.; Zingale, M., Low Mach number modelling of type Ia supernovae. Part I. Hydrodynamics., Astrophys J., 637, 922 (2006)
[30] Alon, U.; Shvarts, D.; Mukamel, D., Scale invariant regime in Rayleigh-Taylor bubble-front dynamics, Phys. Rev. E, 48, 1008 (1993)
[31] Alon, U.; Hecht, J.; Mukamel, D.; Shvarts, D., Scale invariant mixing rates of hydrodynamically unstable interfaces, Phys. Rev. Lett., 72, 2867 (1994)
[32] Alon, U.; Hecht, J.; Ofer, D.; Shvarts, D., Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios, Phys. Rev. Lett., 74, 534 (1995)
[33] Amala, P. A.K., Large-Eddy Simulation of the Rayleigh-Taylor Instability on a Massively Parallel Computer. Lawrence Livermore National Laboratory Report UCRL-LR-119748 (1995)
[34] Amala, P. A.K.; Rodrigue, G. H., Programming models for three-dimensional hydrodynamics on the CM-5 (Part I), Comput. Phys., 8, 181 (1994)
[35] Amala, P. A.K.; Rodrigue, G. H., Programming models for three-dimensional hydrodynamics on the CM-5 (part II), Comput. Phys., 8, 300 (1994)
[36] Amendt, P.; Colvin, J. D.; Tipton, R. E.; Hinkel, D. E.; Edwards, M. J.; Landen, O. L.; Ramshaw, J. D.; Suter, L. J.; Varnum, W. S.; Watt, R. G., Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis, Phys. Plasmas, 9, 2221 (2002)
[37] Amendt, P.; Robey, H. F.; Park, H.-S.; Tipton, R. E.; Turner, R. E.; Milovich, J. L.; Bono, M.; Hibbard, R.; Louis, H.; Wallace, R.; Glebov, V. Yu., Hohlraum-driven ignitionlike double-shell implosions on the Omega laser facility, Phys. Rev. Lett., 94, 065004 (2005)
[38] Amendt, P.; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F., Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums, Phys. Plasmas, 14, 056312 (2007)
[39] Amendt, P.; Milovich, J.; Perkins, L. J.; Robey, H., An indirect-drive non-cryogenic double-shell path to \(1 \omega Nd\)-laser hybrid inertial fusion-fission energy, Nucl. Fusion, 50, 105006 (2010)
[40] Anderson, M. H.; Puranik, B. P.; Oakley, J. G.; Brooks, P. W.; Bonazza, Shock tube investigation of hydrodynamic issues related to inertial confinement fusion, Shock Waves, 10, 377 (2000)
[41] Andre, M. L., The French Megaloule Laser project (LMJ), Fusion Eng. Des., 44, 43 (1999)
[42] Andrews, M. J., Accurate computation of convective transport in transient two-phase flow, Int. J. Numer. Methods Fluids, 21, 205 (1995) · Zbl 0840.76045
[43] Andrews, M. J.; Spalding, D. B., A simple experiment to investigate two-dimensional mixing by Rayleigh-Taylor instability, Phys. Fluids A, 2, 922 (1990)
[44] Andronov, V. A.; Bakhrakh, S. M.; Meshkov, E. E.; Mokhov, V. N.; Nikiforov, V. V.; Pevnitskii, A. V.; Tolshmyakov, A. I., Turbulent mixing at contact surface accelerated by shock waves, Sov. Phys. JETP, 44, 424 (1976)
[45] Andronov, V.A., Zhidov, I.G., Meskov, E.E., Nevmerzhitskii, N.V., Nikiforov, V.V., Razin, A.N., Rogatchev, V.G., Tolshmyakov, A.I., Yanilkin, Y.V., 1995. Computational and experimental studies of hydrodynamic instabilities and turbulent mixing (Review of NVIIEF efforts) (No. LA-12896). Los Alamos National Lab., NM (United States).; Andronov, V.A., Zhidov, I.G., Meskov, E.E., Nevmerzhitskii, N.V., Nikiforov, V.V., Razin, A.N., Rogatchev, V.G., Tolshmyakov, A.I., Yanilkin, Y.V., 1995. Computational and experimental studies of hydrodynamic instabilities and turbulent mixing (Review of NVIIEF efforts) (No. LA-12896). Los Alamos National Lab., NM (United States).
[46] Annamalai, S.; Parmar, M. K.; Ling, Y.; Balachandar, S., Nonlinear Rayleigh-Taylor instability of a cylindrical interface in explosion flow, ASME J. Fluids Eng., 136, 060910 (2014)
[47] Annenkov, V. I.; Bagretsov, V. A.; Bezuglov, V. G.; Vinogradskiĭ, L. M.; Gaĭdash, V. A.; Galakhov, I. V.; Gasheev, A. S., lskra-5 pulsed laser with an output power of 120 TW, Quantum Electron., 21, 487 (1991)
[48] Annenkov, V. I.; Bezuglov, V. G.; Bessarab, A. V.; Bogunenko, Yu. D.; Bondarenko, G. A.; Galakhov, I. V.; Garanin, S. G., New possibilities of the Iskra-5 facility, Quantum Electron., 36, 508 (2006)
[49] Anuchina, N. N.; Kucherenko, Yu. A.; Neuvazhaev, V. E.; Ogibina, V. N.; Shibarshov, L. I.; Yakovlev, V. G., Turbulent mixing at an accelerating interface between liquids of different densities, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 6, 157 (1978)
[50] Anuchina, N. N.; Volkov, V. I.; Gordeychuk, V. A.; Es’kov, N. S.; Ilyutina, O. S.; Kozyrev, O. M., Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code, J. Comput. Appl. Math., 168, 11 (2004) · Zbl 1107.76325
[51] Aref, H.; Tryggvason, G., Model of Rayleigh-Taylor instability, Phys. Rev. Lett., 62, 749 (1989)
[52] Arnett, D., Supernova and Nucleosynthesis (1996), Princeton University Press: Princeton University Press Princeton
[53] Arnett, D., The role of mixing in astrophysics, Astrophys. J. Suppl., 127, 213 (2000)
[54] Arnett, W. D.; Bahcall, J. N.; Kirshner, R. P.; Woosley, S. E., Supernova 1987A, Annu. Rev. Astron. Astrophys., 27, 629 (1989)
[55] Asay, J. R.; Mix, L. P.; Perry, F. C., Ejection of material from shocked surfaces, Appl. Phys. Lett., 29, 284 (1976)
[56] Aschenbach, B.; Egger, R.; Tromper, J., Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary, Nature, 373, 587 (1995)
[57] Aslangil, D.; Banerjee, A.; Lawrie, A. G.W., Numerical investigation of initial condition effects on Rayleigh-Taylor instability with acceleration reversals, Phys. Rev. E, 94, 053114 (2016)
[58] Aspden, A. J.; Bell, J. B.; Day, M. S.; Woosley, S. E.; Zingale, M., Turbulence-flame interactions in type Ia supernovae, Astrophys. J., 689, 1173 (2008)
[59] Aspden, A.; Nikiforakis, N.; Dalziel, S.; Bell, J. B., Analysis of implicit LES methods, Commun. Appl. Math. Comput. Sci., 3, 103 (2008) · Zbl 1162.76024
[60] Attal, N.; Ramaprabhu, P., Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability, Shock Waves, 25, 307 (2015)
[61] Attal, N.; Ramaprabhu, P.; Hossain, J.; Karkhanis, V.; Uddin, M.; Gord, J. R.; Roy, S., Development and validation of a chemical reaction solver coupled to the FLASH code for combustion applications, Comput. & Fluids, 107, 59 (2015) · Zbl 1390.76129
[62] Atzeni, S.; Meyer-ter-Vehn, J., The Physics of Inertial Fusion (2004), Oxford University Press: Oxford University Press Oxford, UK
[63] Aulery, F.; Toutant, A.; Bataille, F.; Zhou, Y., Energy transfer process of anisothermal wall-bounded flows, Phys. Lett. A., 379, 1520 (2015)
[64] Aulery, F.; Dupuy, D.; Toutant, A.; Bataille, F.; Zhou, Y., Spectral analysis of turbulence in anisothermal channel flows, Comput. & Fluids, 151, 115 (2017) · Zbl 1390.76091
[65] Aure, R.; Jacobs, J. W., Particle image velocimetry study of the shock-induced single mode Richtmyer-Meshkov instability, Shock Waves, 18, 161 (2008) · Zbl 1267.76042
[66] Bai, J. S.; Liu, J. H.; Wang, T.; Zou, L. Y.; Li, P.; Tan, D. W., Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows, Phys. Rev. E, 81, 056302 (2010)
[67] Bai, J. S.; Wang, B.; Wang, T.; Liu, K., Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock, Phys. Rev. E 86, 6, 066319 (2012)
[68] Bai, J. S.; Wang, T.; Liu, K.; Li, L.; Zhong, M.; Jiang, Y.; Tang, M.; Yu, J. D.; Pei, X. Y.; Li, P., Large-Eddy simulation of the three-dimensional experiment on Richtmyer-Meshkov instability induced turbulence, Int. J. Astron. Astrophys., 2, 28 (2012)
[69] Bai, X.; Deng, X. L.; Jiang, L., A comparative study of the single-mode Richtmyer-Meshkov instability, Shock Waves (2017)
[70] Baker, G. R.; Meiron, D. I.; Orszag, S. A., Vortex simulations of the Rayleigh-Taylor instability, Phys. Fluids, 23, 1485 (1980) · Zbl 0439.76034
[71] Baker, G. R.; Meiron, D. I.; Orszag, S. A., Generalized vortex methods for free-surface flow problems, J. Fluid Mech., 123, 477 (1982) · Zbl 0507.76028
[72] Baker, G. R.; McCrory, R. L.; Verdon, C. P.; Orszag, S. A., Rayleigh-Taylor instability of fluid layers, J. Fluid Mech., 178, 161 (1987) · Zbl 0633.76044
[73] Baker, G. R.; Caflisch, R. E.; Siegel, M., Singularity formation during Rayleigh-Taylor instability, J. Fluid Mech., 252, 51 (1993) · Zbl 0791.76027
[74] Baker, W. L.; Clark, M. C.; Degnan, J. H.; Kiuttu, G. F.; McClenahan, C. R.; Reinovsky, R. E., Electromagnetic-implosion generation of pulsed high-energy-density plasma, J. Appl. Phys., 49, 4694 (1978)
[75] Bakharakh, S. M.; Drennov, O. B.; Kovalev, N. P.; Lebedev, A. I.; Meshkov, E. E.; Mikhailov, A. L.; Neumerzhitsky, N. V.; Nizovtsev, P. N.; Rayevsky, V. A.; Simonov, G. P.; Solovyev, V. P.; Zhidov, I. G., Lawrence Livermore National Laboratory Report No. UCRL-CR-126710 (1997)
[76] Balakrishnan, K.; Menon, S., On turbulent chemical explosions into dilute aluminum particle clouds, Combust. Theory Model., 14, 583 (2010) · Zbl 1216.80012
[77] Balakrishnan, K.; Genin, F.; Nance, D. V.; Menon, S., Numerical study of blast characteristics from detonation of homogeneous explosives, Shock Waves, 20, 147 (2010) · Zbl 1269.76058
[78] Balick, B.; Frank, A., Shapes and Shaping of Planetary Nebulae, Ann. Rev. Astron. Astrophys., 40, 439 (2002)
[79] Balsara, D.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405 (2000) · Zbl 0961.65078
[80] Banerjee, R.; Kanjilal, S., Effect of surface tension on single mode nonlinear Rayleigh-Taylor instability, J. Pure Appl. Ind. Phys., 5, 73 (2015)
[81] Banerjee, R.; Mandal, L.; Roy, S.; Khan, M.; Gupta, M. R., Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth, Phys. Plasmas, 18, 022109 (2011)
[82] Banerjee, R.; Mandal, L.; Khan, M.; Gupta, M. R., Bubble and spike growth rate of Rayleigh Taylor and Richtmeyer Meshkov instability in finite layers, Indian J. Phys., 87, 929 (2013)
[83] Barber, J. L.; Kadau, K.; Germann, T. C.; Lomdahl, P. S.; Holian, B. L.; Alder, B. J., Atomistic simulation of the Rayleigh-Taylor instability, J. Phys. Conf. Ser., 46, 58 (2006)
[84] Barber, J. L.; Kadau, K.; Germann, T. C.; Alder, B. J., Initial growth of the Rayleigh-Taylor instability via molecular dynamics, Eur. Phys. J. B, 64, 271 (2008)
[85] Barenblatt, G. I., Self-similar turbulence propagation from an instantaneous plane source, (Barenblatt, G. I.; Looss, G.; Joseph, D. D., Nonlinear Dynamics and Turbulence (1983), Pitman Publishing: Pitman Publishing London) · Zbl 0531.76055
[86] Barenblatt, G. I., Scaling, Self-Similarity, and Intermediate Asymptotics (1996), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0907.76002
[87] Barnes, C. W.; Batha, S. H.; Dunne, A. M.; Magelssen, G. R.; Rothman, S.; Day, R. D.; Elliott, N. E.; Haynes, D. A.; Holmes, R. L.; Scott, J. M.; Tubbs, D. L.; Youngs, D. L.; Boehly, T. R.; Jaanimagi, P., Observation of mix in a compressible plasma in a convergent cylindrical geometry, Phys. Plasmas, 9, 4431 (2002)
[88] Barnes, J. F.; Blewett, P. J.; McQueen, R. G.; Meyer, K. A.; Venable, D., Taylor instability in solids, J. Appl. Phys., 45, 727 (1974)
[89] Barnes, J. F.; Janney, D. H.; London, R. K.; Meyer, K. A.; Sharp, D. H., Further experimentation on Taylor instability in solid, J. Applied Phys., 51, 4678 (1980)
[90] Bataille, F.; Zhou, Y., Nature of the energy transfer process in compressible turbulence, Phys. Rev. E, 59, 5417 (1999)
[91] Batchelor, G. K., The Theory of Homogeneous Turbulence (1953), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0053.14404
[92] Batchelor, G. K., Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids, 12, II-233 (1969) · Zbl 0217.25801
[93] Batchelor, G. K.; Proudman, I., The effect of rapid distortion of a fluid in turbulent motion, Quart. J. Mech. Appl. Math., 7, 83 (1954) · Zbl 0055.19201
[94] Batchelor, G. K.; Proudman, I., The large-scale structure of homogeneous turbulence, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 248, 369 (1956) · Zbl 0074.42501
[95] Bazarov, Y. B.; Levushov, A. E.; Logvinov, A. I.; Meshkov, E. E.; Popov, V. V., Application of the method of defocused grids for flow visualization in shock experiments, Trans RFNC-VNIIEF, 11, 294 (2007), (in Russian)
[96] Beale, J. C.; Reitz, R. D., Modeling spray atomization with Kelvin- Helmholtz / Rayleigh-Taylor hybrid model, Atomization Sprays, 9, 623 (1999)
[97] Belen’kii, S. Z.; Fradkin, E. S., Theory of turbulent mixing, Tr. Fiz. Inst. Akad. Nauk SSSR, 29, 207 (1965)
[98] Bel’kov, S. A.; Abzaev, F. M.; Bessarab, A. V.; Bondarenko, S. V.; Veselov, A. V.; Gaidach, V. A.; Dolgoleva, G. V.; Zhidkov, N. V.; Izgorodin, V. M.; Kirillov, G. A.; Kochemasov, G. G., Compression and heating of indirectly driven spherical fusion targets on the ISKRA-5 facility, Laser Part. Beams, 17, 591 (1999)
[99] Bell, D. J.; Routley, N. R.; Millett, J. C.F.; Whiteman, G.; Collinson, M. A.; Keightley, P. T., Investigation of ejecta production from tin at an elevated temperature and the eutectic alloy lead-bismuth, J. Dyn. Behav. Mater., 3, 208 (2017)
[100] Bell, J. B.; Colella, P.; Trangenstein, J. A., Higher order Godunov methods for general systems of hyperbolic conservation laws, J. Comput. Phys., 92, 362 (1989) · Zbl 0675.65090
[101] Bell, J. B.; Berger, M.; Saltzman, J.; Welcome, M., A three- dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Stat. Comput., 15, 127 (1994) · Zbl 0793.65072
[102] Bell, J. B.; Day, M. S.; Rendleman, C. A.; Woosley, S. E.; Zingale, M., Direct numerical simulations of type ia supernovae flames I. The Rayleigh-Taylor instability, Astrophys. J., 608, 883 (2004)
[103] Bellman, R.; Pennington, R. H., Effect of surface tension and viscosity on Taylor instability, Quart. Appl. Math., 12, 151 (1954) · Zbl 0057.41503
[104] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers (1978), McGraw-Hill: McGraw-Hill New York · Zbl 0417.34001
[105] Berger, T. E.; Slater, G.; Hurlburt, N.; Shine, R.; Tarbell, T.; Title, A.; Lites, B. W.; Okamoto, T. J.; Ichimoto, K.; Katsukawa, Y.; Magara, T.; Suematsu, Y.; Shimizu, T., Quiescent prominence dynamics observed with the HINODE solar optical telescope I. Turbulent upflow plumes, Astrophys. J., 716, 1288 (2010)
[106] Berning, M.; Rubenchik, A. M., A weekly nonlinear theory for the dynamical Rayleigh-Taylor instability, Phys. Fluids, 10, 1564 (1998) · Zbl 1185.76468
[107] Bethe, H. A., Supernova mechanisms, Rev. Modern Phys., 62, 801 (1990)
[108] Betti, R.; Hurricane, O. A., Inertial-confinement fusion with lasers, Nature Phys., 12, 435 (2016)
[109] Betti, R.; Sanz, J., Bubble acceleration in the ablative Rayleigh-Taylor instability, Phys. Rev. Lett., 97, 205002 (2006)
[110] Betti, R.; Goncharov, V. N.; McCrory, R. L.; Verdon, C. P., Self-consistent cutoff wave number of the ablative Rayleigh-Taylor instability, Phys. Plasmas, 2, 3844 (1995)
[111] Betti, R.; Goncharov, V. N.; McCrory, R. L.; Sorotokin, P.; Verdon, C. P., Self-consistent stability analysis of ablation fronts in inertial confinement fusion, Phys. Plasmas, 3, 2122 (1996)
[112] Betti, R.; Goncharov, V. N.; McCrory, R. L.; Verdon, C. P., Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion, Phys. Plasmas, 5, 1446 (1998)
[113] Betti, R.; Umansky, M.; Lobatchev, V.; Goncharov, V. N.; McCrory, R. L., Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules, Phys. Plasmas, 8, 5257 (2001)
[114] Betti, R.; Anderson, K.; Goncharov, V. N.; Mccroy, R. L.; Meyerhofer, D. D.; Skupsky, S.; Town, R. P.J., Deceleration phase of inertial confinement fusion implosions, Phys. Plasmas, 9, 2277 (2002)
[115] Betti, R.; Zhou, C. D.; Anderson, K. S.; Perkins, L. J.; Theobald, W.; Solodov, A. A., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett., 98, 155001 (2007)
[116] Betti, R.; Chang, P. Y.; Spears, B. K.; Anderson, K. S.; Edwards, J.; Fatenejad, M.; Lindl, J. D.; McCrory, R. L.; Nora, R.; Shvarts, D., Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement, Phys. Plasmas, 17, 058102 (2010)
[117] Bhatia, P. K., Rayleigh-Taylor instability of a viscous compressible plasma of variable density, Astrophys. Space Sci., 26, 319 (1974)
[118] Biferale, L.; Mantovani, F.; Sbragaglia, M.; Scagliarini, A.; Toschi, F.; Tripiccione, R., High resolution numerical study of Rayleigh-Taylor turbulence using a thermal lattice Boltzmann scheme, Phys. Fluids, 22, 115112 (2010)
[119] Billet, G., Improvement of convective concentration fluxes in a one step reactive flow solver, J. Comput. Phys., 204, 319 (2005) · Zbl 1143.76474
[120] Billet, G.; Abgrall, R., An adaptive shock-capturing algorithm for solving unsteady reactive flows, Comput. & Fluids, 32, 1473 (2003) · Zbl 1033.76031
[121] Billet, G.; Giovangigli, V.; De Gassowski, G., Impact of volume viscosity on a shock-hydrogen-bubble interaction, Combust. Theory Model., 12, 221 (2008) · Zbl 1148.80374
[122] Bird, G. A., Molecular Gas Dynamics (1976), Clarendon: Clarendon Oxford
[123] Bird, G. A., Molecular Gas Dynamics and The Direct Simulation of Gas Flows (1998), Clarendon: Clarendon Oxford
[124] Birk, G. T., The onset of Rayleigh-Taylor instabilities in magnetized partially ionized dense dusty plasmas, Phys. Plasmas, 9, 745 (2002)
[125] Birkhoff, G., Taylor Instability and Laminar Mixing. University of California Report No. LA-1862 (1955)
[126] Birkhoff, G., Hydrodynamic instability, (Proc. of The Symp. Appl. Math XIII (1962), American Math. Soc: American Math. Soc Providence RI), 55-76 · Zbl 0107.42003
[127] Birkhoff, G.; Carter, D., Rising plane bubbles, J. Math. Mech., 6, 769 (1957) · Zbl 0080.18403
[128] Blondin, J. M.; Ellison, D. C., Rayleigh-Taylor instabilities in young supernova remnants undergoing efficient particle acceleration, Astrophys. J., 560, 244 (2001)
[129] Bodner, S. E., Rayleigh-Taylor instability and laser-pellet fusion, Phys. Rev. Lett., 33, 761 (1974)
[130] Boehly, T. R.; Brown, D. L.; Craxton, R. S.; Keck, R. L.; Knauer, J. P.; Kelly, J. H.; Kessler, T. J.; Kumpan, S. A.; bucks, S. J.; Letzring, S. A.; Marshall, F. J.; McCrory, R. L.; Morse, S. F.B.; Seka, W.; Sowes, J. M.; Verdon, C. P., Initial performance results of the OMEGA laser system, Opt. Commun., 133, 495 (1997)
[131] Boffetta, G.; Mazzino, A.; Musachino, S.; Vozella, L., Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence, Phys. Rev. E, 79, 065301 (2009)
[132] Boffetta, G.; Mazzino, A.; Musacchio, S.; Vozella, L., Statistics of mixing in three-dimensional Rayleigh-Taylor turbulence at low Atwood number and Prandtl number one, Phys. Fluids, 22, 035109 (2010) · Zbl 1188.76016
[133] Boffetta, G.; Mazzino, A.; Musacchio, S., Effects of polymer additives on Rayleigh-Taylor turbulence, Phys. Rev. E, 83, 056318 (2011)
[134] Boffetta, G.; De Lillo, F.; Mazzino, A.; Musacchio, S., Bolgiano scale in confined Rayleigh-Taylor turbulence, J. Fluid Mech., 690, 426 (2012) · Zbl 1241.76267
[135] Bolgiano, R., Turbulent spectra in a stably stratified atmosphere, J. Geophys. Res., 64, 2226 (1959)
[136] Bolotnov, I. A.; Lahey, R. T.; Drew, D. A.; Jansen, K. E.; Oberai, A. A., Spectral analysis of turbulence based on the DNS of a channel flow, Comput. & Fluids, 39, 640 (2010) · Zbl 1242.76072
[137] Bonazza, R.; Sturtevant, B., X-ray measurements of growth rates at a gas interface accelerated by shock waves, Phys. Fluids, 8, 2496 (1996)
[138] Bondarenko, S. V.; Dolgoleva, G. V.; Novikova, E. A., Numerical simulation of three-dimensional X-ray and laser field inhomogeneities in experiments with spherical box converters on the Iskra-5 facility, Quantum Electron., 37, 372 (2007)
[139] Boris, J. P., On large eddy simulations using sub-grid turbulence models, Wither turbulence?, (Lumley, J. L., Turbulence at the Crossroads. Turbulence at the Crossroads, Lecture Notes in Physics, vol. 257 (1989), Springer: Springer Berlin), 344-353
[140] Boris, J.; Grinstein, F.; Oran, E.; Kolbe, R., New insights into large eddy simulation, Fluid Dyn. Res., 10, 199 (1992)
[141] Borue, V.; Orszag, S. A., Forced three-dimensional homogeneous turbulence with hyperviscosity, Europhys. Lett., 29, 687 (1995)
[142] Borue, V.; Orszag, S. A., Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity, Phys. Rev. E, 51, R856 (1995)
[143] Bouquet, S.; Falize, E.; Michaut, C.; Gregory, C. D.; Loupias, B.; Vinci, T.; Koenig, M., From lasers to the universe: scaling laws in laboratory astrophysics, High Energy Density Phys., 6, 368 (2010)
[144] Bourgade, J. L.; Marmoret, R.; Darbon, S.; Rosch, R.; Troussel, P.; Villette, B.; Glebov, V., Diagnostics hardening for harsh environment in Laser Mégajoule, Rev. Sci. Instrum., 79, 10F301 (2008)
[145] Boussinesq, V. J., Essai sur la théorie des eux courantes, Mémoires présentés par divers savants à l’Académie des Sciences, Paris, 23, 1 (1877)
[146] Bouzgarrou, G.; Bury, Y.; Jamme, S.; Joly, L.; Haas, J.-F., Laser Doppler velocimetry measurements in turbulent gaseous mixing induced by the Richtmyer-Meshkov instability: Statistical convergence issues and turbulence quantification, ASME J. Fluids Eng., 136, 091209 (2014)
[147] Bradley, P. A., The effect of mix on capsule yields as a function of shell thickness and gas fill, Phys. Plasmas, 21, 062703 (2014)
[148] Bradley, P. A.; Cobble, J. A.; Tregillis, I. L.; Schmitt, M. J.; Obrey, K. D.; Glebov, V.; Batha, S. H.; Magelssen, G. R.; Fincke, J. R.; Hsu, S. C.; Krasheninnikova, N. S.; Murphy, T. J.; Wysocki, F. J., Role of shocks and mix caused by capsule defects, Phys. Plasmas, 19, 092703 (2012)
[149] Branch, D.; Tammann, G. A., Type Ia supernovae as standard candles, Annu. Rev. Astron. Astrophys., 30, 359 (1992)
[150] Bratsun, D. A.; De Wit, A., Buoyancy-driven pattern formation in reactive immiscible two-layer systems, Chem. Eng. Sci., 66, 5723 (2011)
[151] Brenner, M. P.; Lohse, D.; Dupont, T. F., Bubble shape oscillations and the onset of sonoluminescence, Phys. Rev. Lett., 75, 954 (1995)
[152] Britter, R. E.; Hanna, S. R., Flow and dispersion in urban areas, Annu. Rev. Fluid. Mech., 35, 469 (2003) · Zbl 1039.76070
[153] Brode, H. L., A Calculation of the Blast Wave from a Spherical Charge of TNT. Rand Report RM-196 (1957), Rand Corp: Rand Corp Santa Monica CA
[154] Brouillette, M., The Richtmyer-Meshkov Instability, Annu. Rev. Fluid Mech., 34, 445 (2002) · Zbl 1047.76025
[155] Brouillette, M.; Sturtevant, B., Experiments on the Richtmyer-Meshkov instability: Small-scale perturbations on a plane interface, Phys. Fluids A, 5, 916 (1993)
[156] Brouillette, M.; Sturtevant, B., Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface, J. Fluid Mech., 263, 271 (1994)
[157] Brueckner, K. A.; Jorna, S., Laser-driven fusion, Rev. Modern Phys., 46, 325 (1974)
[158] Bryson, A. E.; Gross, R. W.F., Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech., 10, 1 (1961) · Zbl 0100.22103
[159] Bucciantini, N.; Amato, E.; Bandiera, R.; Blondin, J. M.; Del zanna, L., Magnetic Rayleigh-Taylor instability for Pulsar Wind Nebulae in expanding Supernova Remnants, Astron. Astrophys., 423, 253 (2004)
[160] Budzinski, J. M.; Benjamin, R. F.; Jacobs, J. W., Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer, Phys. Fluids, 6, 3510 (1994)
[161] Buffett, B. A., Earth’s core and the geodynamo, Science, 288, 2007 (2000)
[162] Burlot, A.; Gréa, B.-J.; Godeferd, F. S.; Cambon, C.; Griffond, J., Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence, J. Fluid Mech., 765, 17 (2015) · Zbl 1328.76034
[163] Burrows, A., Supernova explosions in the Universe, Nature, 403, 727 (2000)
[164] Burrows, A., Colloquium: Perspectives on core-collapse supernova theory, Rev. Modern Phys., 85, 245 (2013)
[165] Burrows, A.; Hayes, J.; Fryxell, B. A., On the nature of core-collapse supernova explosions, Astrophys J., 450, 830 (1995)
[166] Burshtein, A. I., introduction to Thermodynamics and Kinetic Theory of Matter (2008), Wiley
[167] Burton, G. C., The nonlinear large-eddy simulation method (nLES) applied to \(Sc \approx 1\) and \(Sc \gg 1\) passive-scalar mixing, Phys. Fluids, 20, 035103 (2008) · Zbl 1182.76102
[168] Burton, G. C., Study of ultrahigh Atwood-number Rayleigh-Taylor mixing dynamics using the nonlinear large-eddy simulation method, Phys. Fluids, 23, 045106 (2011)
[169] Busschaert, C.; Falize, É.; Loupias, B.; Michaut, C.; Ravasio, A.; Pelka, A.; Yurchak, R.; Koenig, M., POLAR project: a numerical study to optimize the target design, New J. Phys., 15, 035020 (2013)
[170] Buttler, W. T.; Routley, N.; Hixson, R. S.; King, N. S.P.; Olson, R. T.; Rigg, P. A.; Rimmer, A.; Zellner, M. B., Method to separate and determine the amount of ejecta produced in a second material-fragmentation event, Appl. Phys. Lett., 90, 151921 (2007)
[171] Buttler, W. T.; Zellner, M. B.; Olson, R. T.; Rigg, P. A.; Hixson, R. S.; Hammerberg, J. E.; Obst, A. W.; Payton, J. R.; Iverson, A.; Young, J., Dynamic comparisons of piezoelectric ejecta diagnostics, J. Appl. Phys., 101, 063547 (2007)
[172] Buttler, W. T.; Oró, D. M.; Preston, D. L.; Mikaelian, K. O.; Cherne, F. J.; Hixson, R. S.; Mariam, F. G.; Morris, C.; Stone, J. B.; Terrones, G.; Tupa, D., Unstable Richtmyer-Meshkov growth of solid and liquid metal in vacuum, J. Fluid Mech., 703, 60 (2012) · Zbl 1248.76065
[173] Buttler, W. T.; Oró, D. M.; Olson, R. T.; Cherne, F. J.; Hammerberg, J. E.; Hixson, R. S.; Monfared, S. K., Second shock ejecta measurements with an explosively driven two-shockwave drive, J. Appl. Phys., 116, 103519 (2014)
[174] Buttler, W. T.; Lamoreaux, S. K.; Schulze, R. K.; Schwarzkopf, J. D.; Cooley, J. C.; Grover, M.; Hammerberg, J. E.; La Lone, B. M.; Llobet, A.; Manzanares, R.; Martinez, J. I.; Schmidt, D. W.; Sheppard, D. G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R., Ejecta transport breakup conversion, J. Dyn. Behav. Mater., 3, 334 (2017)
[175] Bychkov, V.; Golberg, S. M.; Liberman, M. A., Self-consistent model of the Rayleigh-Taylor instability in ablatively accelerated laser plasma, Phys. Plasmas, 1, 2976 (1994)
[176] Bychkov, V.; Marklund, M.; Modestov, M., The Rayleigh-Taylor instability and internal waves in quantum plasmas, Phys. Lett. A, 372, 3042 (2008) · Zbl 1220.76078
[177] Cabot, W.; Cook, A. W., Reynolds number effects on the Rayleigh-Taylor instability with possible implications for type-1a supernovae, Nature Phys., 2, 562 (2006)
[178] Cabot, W.; Zhou, Y., Statistical measurements of scaling and anisotropy of turbulent flows induced by Rayleigh-Taylor instability, Phys. Fluids, 25, 015107 (2013)
[179] Cabot, W.; Schilling, O.; Zhou, Y., Influence of subgrid scales on resolvable turbulence and mixing in Rayleigh-Taylor flow, Phys. Fluids, 16, 495 (2004) · Zbl 1186.76086
[180] Calder, A. C.; Fryxell, B.; Plewa, T.; Rosner, R.; Dursi, L. J.; Weirs, V. G.; Dupont, T.; Robey, H. F.; Kane, J. O.; Remington, B. A.; Drake, R. P.; Dimonte, G.; Zingale, M.; Timmes, F. X.; Olson, K.; Ricker, P.; MacNeice, P.; Tufo, H. M., On validating as astrophysical simulation code, Astrophys, J. Suppl. Ser., 143, 201 (2002)
[181] Callebaut, D.K., Lineaire en niet-lineaire Perturbaties in Hydro-, Magneto-en Gravitodynamika. Rijksuniversiteit, Instituut voor Nukleaire Wetenschappen, 1972.; Callebaut, D.K., Lineaire en niet-lineaire Perturbaties in Hydro-, Magneto-en Gravitodynamika. Rijksuniversiteit, Instituut voor Nukleaire Wetenschappen, 1972.
[182] Cameron, I. G.; Pike, H. H.M., The instability of an interface between two fluid under variable normal acceleration, (Proceedings Fourth Symposium (international) on Detonation (1965), Office of Naval Research, United States Dept. of the Navy), 305
[183] Canaud, B.; Laffite, S.; Temporal, M., Shock ignition of direct-drive double-shell targets, Nucl. Fusion, 51, 062001 (2011)
[184] Canuto, V. M.; Goldman, I., Analytical model for large-scale turbulence, Phys. Rev. Lett., 54, 430 (1985)
[185] Cao, Y. G.; Guo, H. Z.; Zhang, Z. F.; Sun, Z. H.; Chow, W. K., Effect of viscosity on the growth of Rayleigh-Taylor instability, J. Phys. A, 44, 275501 (2011) · Zbl 1432.76101
[186] Caproni, A.; Lanfranchi, G. A.; Luiz da Silva, A.; Falceta-Gonçalves, D., Three-dimensional hydrodynamical simulations of the supernovae-driven gas loss in the dwarf spheroidal galaxy Ursa Minor, Astrophys. J., 805, 109 (2015)
[187] Carlès, P.; Popinet, S., Viscous nonlinear theory of Richtmyer-Meshkov instabilities, Phys. Fluids, 13, 1833 (2001) · Zbl 1184.76081
[188] Carlès, P.; Popinet, S., The effect of viscosity surface tension and nonlinearity on Richtmyer-Meshkov instabilities, Eur. J. Mech. B Fluids, 21, 511 (2002) · Zbl 1046.76018
[189] Carlès, P.; Huang, Z.; Carbone, G.; Rosenblatt, C., Rayleigh-Taylor instability for immiscible fluids of arbitrary viscosities: a magnetic levitation investigation and theoretical model, Phy. Rev. Lett., 104501 (2006)
[190] Case, K. M., Taylor instability of an inverted atmosphere, Phys. Fluids, 3, 366 (1960) · Zbl 0101.23701
[191] Casey, D. T.; Woods, D. T.; Smalyuk, V. A.; Hurricane, O. A.; Glebov, V. Y.; Stoeckl, C.; Theobald, W.; Wallace, R.; Nikroo, A.; Schoff, M.; Shuldberg, C.; Wu, K. J.; Frenje, J. A.; Landen, O. L.; Remington, B. A.; Glendinning, G., Performance and mix measurements of indirect drive Cu-doped Be implosions, Phys. Rev. Lett., 114, 205002 (2015)
[192] Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; Clark, D. S.; Robey, H. F.; Pak, A.; Macphee, A. G., Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive, Phys. Rev. Lett., 115, 105001 (2015)
[193] Casey, D. T.; Sayre, D. B.; Brune, C. R.; Smalyuk, V. A.; Weber, C. R.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Dearborn, D.; Benedetti, L. R., Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion, Nature Phys., 13, 1227 (2017)
[194] Casner, A.; Caillaud, T.; Darbon, S.; Duval, A.; Thfouin, I.; Jadaud, J. P.; LeBreton, J. P.; Reverdin, C.; Rosse, B.; Rosch, R.; Blanchot, N.; Villette, B.; Wrobel, R.; Miquel, J. L.; 2014, LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics, High Energy Density Phys., 17, 2 (2015)
[195] Casner, A.; Martinez, D.; Smalyuk, V.; Masse, L.; Kane, J. O.; Villette, B.; Fariaut, J., Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics, High Energy Density Phys., 17, 146 (2015)
[196] Castiglioni, G.; Domaradzki, J. A., A numerical dissipation rate and viscosity in flow simulations with realistic geometry using low-order compressible Navier-Stokes solvers, Comput. & Fluids, 119, 37 (2015) · Zbl 1390.76137
[197] Catherasoo, C. J.; Sturtevant, B., Shock dynamics in non-uniform media, J. Fluid Mech., 127, 539 (1983) · Zbl 0555.76051
[198] Cavailler, C.; Mercier, P.; Rodriguez, G.; Haas, J. F., A new vertical shock tube for Rayleigh-Taylor instability measurements, AIP Conf. Proc., 208, 564 (1990)
[199] Celani, A.; Mazzino, A.; Vozella, L., Rayleigh-Taylor turbulence in two dimensions, Phys. Rev. Lett., 96, 134504 (2006)
[200] Celani, A.; Mazzino, A.; Muratore-Ginanneschi, P.; Vozella, L., Phase-field model for the Rayleigh-Taylor instability of immiscible fluids, J. Fluid Mech., 622, 115 (2009) · Zbl 1165.76335
[201] Celani, A.; Musacchio, S.; Vincenzi, D., Turbulence in more than two and less than three dimensions, Phys. Rev. Lett., 104, 184506 (2010)
[202] Chandrasekhar, S., The maximum mass of ideal white dwarfs, Astrophys. J., 74, 81 (1931) · Zbl 0002.23502
[203] Chandrasekhar, S., Stellar Structure (1938), University of Chicago Press: University of Chicago Press Chicago · JFM 64.1471.02
[204] Chandrasekhar, S., The character of equilibrium of an incompressible heavy viscous fluid of variable density, Proc. Cambridge Philos. Soc., 51, 162 (1955) · Zbl 0074.42306
[205] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Oxford Univ. Press: Oxford Univ. Press Oxford, UK · Zbl 0142.44103
[206] Chapman, P. R.; Jacobs, J. W., Experiments on the three-dimensional incompressible Richtmyer-Meshkov instability, Phys. Fluids, 18, 074101 (2006) · Zbl 1146.76346
[207] Chen, F.; Xu, A.-G.; Zhang, G.-C., Viscosity, heat conductivity and Prandtl number effects in the Rayleigh-Taylor Instability, Front. Phys., 11, 114703 (2016)
[208] Chen, H. B.; Hilko, B.; Panarella, E., The Rayleigh-Taylor instability in the spherical pinch, J. Fusion Res., 13, 275 (1994)
[209] Chen, Q.; Chen, B.; Shi, L.; Yi, Y.; Wang, Y., Numerical study on Rayleigh-Taylor instabilities in the lightning return stroke, Phys. Plasmas, 22, 092902 (2015)
[210] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid. Mech., 30, 329 (1998) · Zbl 1398.76180
[211] Chen, X.; Dong, G.; Jiang, H., A three-dimensional numerical study on instability of sinusoidal flame induced by multiple shock waves, Acta Mech. Sin., 33, 316 (2017) · Zbl 1372.80004
[212] Chen, Y.-T.; Hong, R.-K.; Chen, H.-Y.; Tang, T. G.; Ren, G. W., Experimental examination of ejecta production on shock-melted Sn targets under various surface roughnesses, J. Dyn. Behav. Mater., 3, 174 (2017)
[213] Cheng, B.; Glimm, J.; Sharp, D. H., A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing, Chaos, 12, 267 (2002) · Zbl 1080.76579
[214] Cherfils, C.; Lafitte, O., Analytic solutions of the Rayleigh equation for linear density profiles, Phys. Rev. E, 62, 2967 (2000)
[215] Cherfils, C.; Mikaelian, K. O., Simple model for the turbulent mixing width at an ablating surface, Phys. Fluids, 8, 522 (1996) · Zbl 1023.76553
[216] Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.; Karkhanis, V.; Ramaprabhu, P., On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum, J. Appl. Phys., 118, 185901 (2015)
[217] Chertkov, M., Phenomenology of Rayleigh-Taylor Turbulence, Phys. Rev. Lett., 91, 115001 (2003)
[218] Chertkov, M.; Kolokolov, I.; Lebedev, V., Effects of surface tension on immiscible Rayleigh-Taylor turbulence, Phys. Rev. E, 71, 055301 (2005)
[219] Chertkov, M.; Lebedev, V.; Vladimirova, N., Reactive Rayleigh-Taylor turbulence, J. Fluid Mech., 633, 1 (2009) · Zbl 1183.76727
[220] Chevalier, R. A.; Blondin, J. M.; Emmering, R. T., Hydrodynamic instabilities in supernova remnants - Self-similar driven waves, Astrophys J., 392, 118 (1992)
[221] Chhajlani, R. K.; Vaghela, D. S., Rayleigh-Taylor instability of ionized viscous fluids with FLR-corrections and surface-tension, Astrophys. Space Sci., 155, 257 (1989) · Zbl 0672.76050
[222] Chollet, J.-P.; Lesieur, M., Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., 38, 2747 (1981)
[223] Chou, Y.-J.; Shao, Y.-C., Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment, Phys. Fluids, 28, 043302 (2016)
[224] Cimarelli, A.; De Angelis, E., The physics of energy transfer toward improved subgrid-scale models, Phys. Fluids, 26, 055103 (2014)
[225] Cimarelli, A.; De Angelis, E.; Casciola, C. M., Paths of energy in turbulent channel flows, J. Fluid Mech., 715, 436 (2013) · Zbl 1284.76193
[226] Clark, D. H.; Stephenson, F. R., The Historical Supernovae (1977), Pergamon: Pergamon Oxford
[227] Clark, D. S.; Haan, S. W.; Cook, A. W.; Edwards, M. J.; Hammel, B. A.; Koning, J. M.; Marinak, M. M., Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs, Phys. Plasmas, 18, 082701 (2011)
[228] Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P.J., Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility, Phys. Plasmas, 20, 056318 (2013)
[229] Clark, D. S.; Tabak, M., Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces, Phys. Rev. E, 72, 056308 (2005)
[230] Clark, D. S.; Tabak, M., Linear and nonlinear Rayleigh-Taylor growth at strongly convergent spherical interfaces, Phys. Fluids, 18, 064106 (2006) · Zbl 1138.76354
[231] Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.et.al., Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility, Phys. Plasmas, 23, 056302 (2016)
[232] Clark, T. T.; Zemach, C., A spectral model applied to homogeneous turbulence, Phys. Fluids, 7, 1674 (1995) · Zbl 1027.76577
[233] Clark, T. T.; Zemach, C., Symmetries and the approach to statistical equilibrium in isotropic turbulence, Phys. Fluids, 10, 2846 (1998) · Zbl 1185.76661
[234] Clark, T. T.; Zhou, Y., Self-similarity of two flows induced by instabilities, Phys. Rev. E, 68, 066305 (2003)
[235] Clark, T. T.; Zhou, Y., Growth rate exponents of Richtmyer-Meshkov mixing layers, ASME J. Appl. Mech., 73, 461 (2006) · Zbl 1111.74373
[236] Clavin, P.; Williams, F., Asymptotic spike evolution in Rayleigh-Taylor instability, J. Fluid Mech., 525, 105 (2005) · Zbl 1065.76081
[237] Clery, D., Laser fusion with a difference, Science, 347, 111 (2015)
[238] Cobos Campos, F.; Wouchuk, J. G., Analytical asymptotic velocities in linear Richtmyer-Meshkov-like flows, Phys. Rev. E, 90, 053007 (2014)
[239] Cobos Campos, F.; Wouchuk, J. G., Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected, Phys. Rev. E, 93, 053111 (2016)
[240] Cobos Campos, F.; Wouchuk, J. G., Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected, Phys. Rev. E, 96, 013102 (2017)
[241] Cohen, I. M.; Kundu, P. K., Fluid Mechanics (2004), Elsevier: Elsevier Amsterdan
[242] Cohen, R. H.; Dannevik, W. P.; Dimits, A. M.; Eliason, D. E.; Mirin, A. A.; Zhou, Y.; Porter, D. H.; Woodward, P. R., Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation, Phys. Fluids, 14, 3692 (2002) · Zbl 1185.76089
[243] Cole, R. H., Underwater Explosions (1948), Princeton University Press: Princeton University Press Princeton, New Jersey
[244] Cole, R. L.; Tankin, R. S., Experimental study of Taylor instability, Phys. Fluids, 16, 1810 (1973)
[245] Collins, B. D.; Jacobs, J. W., PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/\(SF_6\) interface, J. Fluid Mech., 464, 113 (2002) · Zbl 1008.76503
[246] Connor, J. W.; Taylor, J. B., Scaling laws for plasma confinement, Nucl. Fusion, 17, 5 (1977)
[247] Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B., The magnetic Rayleigh-Taylor instability in astrophysical discs, Mon. Not. R. Astron. Soc., 462, 565 (2016)
[248] Cook, A. W., Artificial fluid properties for large-eddy simulation of compressible turbulent mixing, Phys. Fluids, 19, 055103 (2007) · Zbl 1146.76358
[249] Cook, A. W., Enthalpy diffusion in multicomponent flows, Phys. Fluids, 21, 055109 (2009) · Zbl 1183.76157
[250] Cook, A. W.; Cabot, W. H., A high-wavenumber viscosity for high-resolution numerical methods, J. Comput. Phys., 195, 594 (2004) · Zbl 1115.76366
[251] Cook, A. W.; Cabot, W. H., Hyperviscosity for shock-turbulence interactions, J. Comput. Phys., 203, 379 (2005) · Zbl 1143.76477
[252] Cook, A. W.; Dimotakis, P. E., Transition stages of Rayleigh-Taylor instability between miscible fluids, J. Fluid Mech., 443, 69 (2001) · Zbl 1015.76037
[253] Cook, A. W.; Zhou, Y., Energy transfer in Rayleigh-Taylor instability, Phys. Rev. E, 66, 026312 (2002)
[254] Cook, A. W.; Cabot, W.; Miller, P. L., The mixing transition in Rayleigh-Taylor instability, J. Fluids Mech., 511, 333 (2004) · Zbl 1067.76040
[255] Cook, R. C.; Kozioziemski, B. J.; Nikroo, A.; Wilkens, H. L.; Bhandarkar, S.; Forsman, A. C.; Haan, S. W.; Hoppe, M. L.; Huang, H.; Mapoles, E.; Moody, J. D.; Sater, J. D.; Seugling, R. M.; Stephens, R. B.; Takagi, M.; Xu, H. W., National Ignition Facility target design and fabrication, Laser Part. Beams, 26, 479 (2008)
[256] Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L., Direct-drive inertial confinement fusion: A review, Phys. Plasmas, 22, 110501 (2015)
[257] Cross, J. E.; Gregori, G.; Foster, J. M.; Graham, P.; Bonnet-Bidaud, J. M.; Busschaert, C.; Charpentier, N.; Danson, C. N.; Doyle, H. W.; Drake, R. P.; Fyrth, J., Laboratory analogue of a supersonic accretion column in a binary star system, Nature Commun., 7, 11899 (2016)
[258] Cross, J. E.; Reville, B.; Gregori, G., Scaling of magneto-quantum-radiative hydrodynamic equations: from laser-produced plasmas to astrophysics, Astrophys. J., 795, 59 (2014)
[259] Crowther, P. A., Physical properties of Wolf-Rayet stars, Annu. Rev. Astron. Astrophys., 45, 177 (2007)
[260] Cui, A.; Street, R. L., Large-eddy simulation of coastal upwelling flow, Environ. Fluid Mech., 4, 197 (2004)
[261] Curzon, F. L.; Folkierski, A.; Latham, R.; Nation, J. A., Experiments on the growth rate of surface instabilities in a linear pinched discharge, Proc. R. Soc. A, 257, 386 (1960)
[262] Dahlburg, J. P.; Gardner, J. H.; Doolen, G. D.; Haan, S. W., The effect of shape in the three-dimensional ablative Rayleigh-Taylor instability I. Single-mode perturbations, Phys. Fluids B, 5, 571 (1993)
[263] Dahlburg, J. P.; Fyfe, D. E.; Gardner, J. H.; Haan, S. W.; Bodner, S. E.; Doolen, G. D., Three dimensional multimode simulations of the ablative Rayleigh-Taylor instability, Phys. Plasmas, 2, 2453 (1995)
[264] Daly, B. J., Numerical study of two fluids Rayleigh-Taylor instability, Phys. Fluids, 10, 297 (1967) · Zbl 0147.45806
[265] Daly, B. J., Numerical study of the effect of surface tension on interface instability, Phys. Fluids, 12, 1340 (1969) · Zbl 0177.56103
[266] Dalziel, S. B., Rayleigh-Taylor instability: experiments with image analysis, Dyn. Atmos. Oceans, 20, 127 (1993)
[267] Dalziel, S. B.; Linden, P. F.; Youngs, D. L., Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability, J. Fluid Mech., 399, 1 (1999) · Zbl 0942.76513
[268] Dalziel, S. B.; Patterson, M. D.; Caulfield, C. P.; Coomaraswamy, I. A., Mixing efficiency in high-aspect-ratio Rayleigh-Taylor experiments, Phys. Fluids, 20, 065106 (2008) · Zbl 1182.76177
[269] d’Angelo, N., The Rayleigh-Taylor instability in dusty plasmas, Planetary and space science, 41, 469 (1993)
[270] Darlington, R. M.; McAbee, T. L.; Rodrigue, G., A study of ALE simulations of Rayleigh-Taylor instability, Comput. Phys. Comm., 135, 58 (2001) · Zbl 0987.76061
[271] Darlington, R. M.; McAbee, T. L.; Rodrigue, G., Large eddy simulation and ALE mesh motion in Rayleigh-Taylor instability simulation, Comput. Phys. Comm., 144, 261 (2002) · Zbl 1016.76042
[272] Darova, N. S.; Dibirov, O. A.; Shanin, A. A.; Yanilkin, Yu. V.; Zharova, G. V., EGAK codes. Lagrangian-Eulerian method for 2D gas-dynamic fows in multicomponent medium, VANT. Ser. Mat. Mod. Fiz. Proc., N2, 49 (1994), (in Russian)
[273] Davidson, K.; Fesen, R. A., Recent developments concerning the Crab Nebula, Annu. Rev. Astron. Astrophys., 23, 119 (1985)
[274] Davies, R. M.; Taylor, G. I., The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 200, 375 (1950)
[275] Deardorff, J. W., Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Layer Meteorol., 18, 495 (1980)
[276] Debacq, M.; Hulin, J.-P.; Salin, D.; Perrin, B.; Hinch, E. J., Buoyant mixing of miscible fluids of varying viscosities in vertical tubes, Phys. Fluids, 15, 3846 (2003) · Zbl 1186.76132
[277] Debnath, L., Nonlinear Water Waves (1994), Academic Press: Academic Press Boston · Zbl 0793.76001
[278] Degnan, J. H.; Lehr, F. M.; Beason, J. D.; Baca, G. P.; Bell, D. E.; Chesley, A. L.; Coffey, S. K.; Dietz, D.; Dunlap, D. B.; Englert, S. E.; Englert, T. J.; Gale, D. G.; Graham, J. D.; Havranek, J. J.; Holmberg, C. D.; Hussey, T. W.; Lewis, R. A.; Outten, C. A.; Peterkin, R. E.; Price, D. W.; Roderick, N. F.; Ruden, E. L.; Shumlak, U.; Smith, G. A.; Turchi, P. J., Electromagnetic Implosion of Spherical Liner, Phys. Rev. Lett., 74, 98 (1995)
[279] De Groot, J. S.; Toor, A.; Golberg, S. M.; Liberman, M. A., Growth of the Rayleigh-Taylor instability in an imploding Z-pinch, Phys. Plasmas, 4, 737 (1997)
[280] de la Calleja, E. M.; Zetina, S.; Zenit, R., Rayleigh-Taylor instability creates provocative images in painting, Phys. Fluids, 26, 091102 (2014)
[281] DeNeef, P., Two waves on a beam plasma system, Phys. Fluids, 18, 1209 (1975)
[282] Dickel, J. R.; Eilek, J. A.; Jones, E. M.; Reynolds, S. P., Radio emission from young supernova remnants - Effects of an inhomogeneous circumstellar medium, Astrophys. J. Suppl. Ser., 70, 497 (1989)
[283] Diegelmann, F.; Tritschler, V.; Hickel, S.; Adams, N., On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction, Combust. Flame, 163, 414 (2016)
[284] Diegelmann, F. R.; Hickel, S.; Adams, N. A., Shock Mach number influence on re- action wave types and mixing in reactive shock-bubble interaction, Combust. Flame, 174, 085 (2016)
[285] Diegelmann, F. R.; Hickel, S.; Adams, N. A., Three-dimensional reacting shock-bubble interaction, Combust. Flame, 181, 300 (2017)
[286] Dimonte, G., Experimental test of modulational theory and stochasticity of nonlinear oscillations, Phys. Fluids, 25, 604 (1982)
[287] Dimonte, G., Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental verification, Phys. Plasmas, 7, 2255 (2000)
[288] Dimonte, G., Dependence of turbulent Rayleigh-Taylor instability on initial perturbations, Phys. Rev. E, 69, 056305 (2004)
[289] Dimonte, G.; Ramaprabhu, P., Simulations and model of the nonlinear Richtmyer-Meshkov instability, Phys. Fluids, 22, 014104 (2010) · Zbl 1183.76181
[290] Dimonte, G.; Remington, B., Richtmyer-Meshkov experiments on the Nova laser at high compression, Phys. Rev. Lett., 70, 1806 (1993)
[291] Dimonte, G.; Schneider, M., Turbulent Rayleigh-Taylor instability experiments with variable acceleration, Phys. Rev. E, 54, 3740 (1996)
[292] Dimonte, G.; Schneider, M., Turbulent Richtmyer-Meshkov instability experiments with strong radiatively driven shocks, Phys. Plasmas, 4 (1997)
[293] Dimonte, G.; Schneider, M., Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories, Phys. Fluids, 12, 304 (2000) · Zbl 1149.76361
[294] Dimonte, G.; Frerking, C. E.; Schneider, M., Richtmyer-Meshkov instability in the turbulent regime, Phys. Rev Lett., 74, 4855 (1995)
[295] Dimonte, G.; Morrison, J.; Hulsey, S.; Nelson, D.; Weaver, S.; Susoeff, A.; Hawke, R.; Schneider, M.; Batteaux, J.; Lee, D.; Ticehurst, J., A linear electric motor to study turbulent hydrodynamics, Rev. Sci. Instrum., 67, 302 (1996)
[296] Dimonte, G.; Frerking, C. E.; Schneider, M.; Remington, B., Richtmyer-Meshkov instability with strong radiatively driven shocks, Phys. Plasmas, 3, 614 (1996)
[297] Dimonte, G.; Youngs, D. L.; Dimits, A.; Weber, S.; Marinak, M.; Wunsch, S.; Garasi, C.; Robinson, A.; Andrews, M. J.; Ramaprabhu, P.; Calder, A. C.; Fryxell, B.; Biello, J.; Dursi, L.; MacNeice, P.; Olson, K.; Ricker, P.; Rosner, R.; Timmes, F.; Tufo, H.; Young, Y.-N.; Zingale, M., A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration, Phys. Fluids, 16, 1668 (2004) · Zbl 1186.76143
[298] Dimonte, G.; Ramaprabhu, P.; Youngs, D. L.; Andrews, M. J.; Rosner, R., Recent advances in the turbulent Rayleigh-Taylor instability, Phys. Plasmas, 12, 056301 (2005)
[299] Dimonte, G.; Ramaprabhu, P.; Andrews, M. J., Rayleigh-Taylor instability with complex acceleration history, Phys. Rev. E, 76, 046313 (2007)
[300] Dimonte, G.; Terrones, G.; Cherne, F. J.; Germann, T. C.; Dupont, V.; Kadau, K.; Buttler, W. T.; Oro, D. M.; Morris, C.; Preston, D. L., Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities, Phys. Rev. Lett., 107, 264502 (2011)
[301] Dimonte, G.; Terrones, G.; Cherne, F. J.; Ramaprabhu, P., Ejecta source model based on the nonlinear Richtmyer-Meshkov instability, J. Appl. Phys., 113, 024905 (2013)
[302] Dimotakis, P. E., The mixing transition in turbulent flow, J. Fluid Mech., 409, 69 (2000) · Zbl 0986.76024
[303] Dimotakis, P. E., Turbulent mixing, Annu. Rev. Fluid Mech., 37, 329 (2005) · Zbl 1117.76029
[304] DiPrima, R. C.; Swinney, H. L., Hydrodynamic instabilities and The Transition to Turbulence (1981), Springer: Springer Berlin · Zbl 0453.00052
[305] Di Stefano, C. A.; Kuranz, C. C.; Keiter, P. A.; Klein, S. R.; Marion, D. C.; Drake, R. P., Late-time breakup of laser-driven hydrodynamics experiments, High Energy Density Phys., 8, 360 (2012)
[306] Di Stefano, C. A.; Merritt, E. C.; Doss, F. W.; Flippo, K. A.; Rasmus, A. M.; Schmidt, D. W., Evolution of surface structure in laser-preheated perturbed materials, Phys. Rev. E, 95, 023202 (2017)
[307] Dittrich, T. R.; Hammel, B. A.; Keane, C. J.; McEachern, R.; Turner, R. E.; Haan, S. W.; Suter, L. J., Diagnosis of pusher-fuel mix in indirectly driven Nova implosions, Phys. Rev. Lett., 73, 2324 (1994)
[308] Dittrich, T. R.; Hurricane, O. A.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Hinkel, D. E.; Berzak hopkins, L. F.; Le Pape, S.; Ma, T.; Milovich, J. L.; Moreno, J. C.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Salmonson, J. D.; Kline, J. L., Design of a high-foot/high-adiabat ICF capsule for the National Ignition Facility, Phys. Rev Lett., 112, 055002 (2014)
[309] Dolence, J. C.; Burrows, A.; Murphy, J. W.; Nordhaus, J., Dimensional dependence of the hydrodynamics of core-collapse supernovae, Astrophys. J., 765, 110 (2013)
[310] Doludenko, A. N.; Fortova, S. V., Numerical simulation of Rayleigh-Taylor instability in inviscid and viscous media, Comput. Math. Math. Phys., 55, 874 (2015) · Zbl 1453.76005
[311] Domaradzki, J. A.; Adams, N. A., Direct modeling of subgrid scales of turbulence in large eddy simulations, J. Turbul., 3, 24 (2002)
[312] Domaradzki, J. A.; Liu, W., Approximation of subgrid-scale energy transfer based on the dynamics of resolved scales in turbulence, Phys. Fluids, 7, 2025 (1995) · Zbl 1032.76566
[313] Domaradzki, J. A.; Radhakrishnan, S., Effective eddy viscosities in implicit large eddy simulations of decaying high Reynolds number turbulence with and without rotation, Fluid Dyn. Res., 36, 385 (2005) · Zbl 1153.76374
[314] Domaradzki, J. A.; Rogallo, R. S., Local energy transfer and non- local interactions in homogeneous, isotropic turbulence, Phys. Fluids A, 2, 413 (1990)
[315] Domaradzki, J. A.; Metcalfe, R. W.; Rogallo, R. S.; Riley, J. J., Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations, Phys. Rev. Lett., 58, 547 (1987)
[316] Domaradzki, J. A.; Liu, W.; Hartel, C.; Kleiser, L., Energy transfer in numerically simulated wall-bounded turbulent flows, Phys. Fluids A, 6, 1583 (1994) · Zbl 0830.76041
[317] Domaradzki, J. A.; Xiao, Z.; Smolarkiewicz, P., Effective eddy viscosities in implicit large eddy simulations of turbulent flows, Phys. Fluids, 15, 3890 (2003) · Zbl 1186.76146
[318] Doss, F. W.; Loomis, E. N.; Welser-Sherrill, L.; Fincke, J. R.; Flippo, K. A.; Keiter, P. A., Instability, mixing, and transition to turbulence in a laser-driven counterflowing shear experiment, Phys. Plasmas, 20, 012707 (2013)
[319] Douglas, M. R.; Deeney, C.; Roderick, N. F., Effect of sheath curvature on Rayleigh-Taylor mitigation in high-velocity uniform-fill, Z-Pinch implosions. Phys. Rev. Lett., 78, 4577 (1997)
[320] Dowling, D. R.; Dimotakis, P. E., Similarity of the concentration field of gas-phase turbulent jets, J. Fluid Mech., 218, 109 (1990)
[321] Drake, R. P., Laboratory experiments to simulate the hydrodynamics of supernova remnants and supernovae, J. Geophys. Res., 104, 14505 (1999)
[322] Drake, R. P., High Energy Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (2006), Springer: Springer Berlin
[323] Drake, R. P., Perspectives on high-energy-density physics, Phys. Plasmas, 16, 055501 (2009)
[324] Drake, R. P.; Carroll, J. J.; Estabrook, K.; Glendinning, S. G.; Remington, B. A.; Wallace, R.; McCray, R., Development of a laboratory environment to test models of supernova Remnant formation, Astrophys. J., 500, L157 (1998)
[325] Drake, R. P.; Smith, T. B.; Carroll, J. J.; Yan, Y.; Glendinning, S. G.; Estabrook, Kent; Ryutov, D. D.; Remington, B. A.; Wallace, R. J.; McCray, R., Progress toward the laboratory simulation of young supernova remnants, Astrophys. J. Suppl. Ser., 127, 305 (2000)
[326] Drake, R. P.; Robey, H. F.; Hurricane, O. A.; Zhang, Y.; Remington, B. A.; Knauer, J.; Glimm, J.et.al., Experiments to produce a hydrodynamically unstable, spherically diverging system of relevance to instabilities in supernovae. Astrophys. J., 564, 896 (2002)
[327] Drake, R. P.; Harding, E. C.; Kuranz, C. C., Approaches to turbulence in high-energy-density experiments, Phys. Scr. T, 132, 014022 (2008)
[328] Dray, L. M.; Tout, C. A.; Karakas, A. I.; Lattanzio, J. C., Chemical enrichment by Wolf-Rayet and asymptotic giant branch stars, Mon. Not. R. Astron. Soc., 338, 973 (2003)
[329] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0449.76027
[330] Drikakis, D., Advances in turbulent flow computations using high-resolution methods, Prog. Aerosp. Sci., 39, 405 (2003)
[331] Drikakis, D.; Tsangaris, S., On the solution of the compressible Navier-Stokes equations using improved flux vector splitting methods, Appl. Math. Model., 17, 282 (1993) · Zbl 0773.76045
[332] Drikakis, D.; Grinstein, F.; Youngs, D., On the computation of instabilities and symmetry-breaking in fluid mechanics, Prog. Aerosp. Sci., 41, 609 (2005)
[333] Dryden, H. L.; Murnaghan, F. D.; Bateman, H., Hydrodynamics (1956), Dover: Dover NY · Zbl 0071.40102
[334] Dudin, V. I.; Gubkov, E. V.; Meshkov, E. E.; Nikulin, A. A.; Stadnik, A. L.; Statsenko, V. P.; Til’kunov, V. A.; Vlasov, Y. A.; Bashurov, V. V.; Bykova, E. A.; Tarasov, V. I.; Yanilkin, Y. V.; Zhrnailo, V. A., The perturbations and turbulent mixing evolution at the plane gas-gas interface in GEM-driven shock-tube experiments, (Jourdan, G.; Houas, L., Proc. 6th int. Workshop on The Physics of Compressible Turbulent Mixing (1997), Marseille: Marseille France), 152
[335] Duff, R. E.; Harlow, F. H.; Hirt, C. W., Effects of diffusion on interface instability between gases, Phys. Fluids, 5, 417 (1962) · Zbl 0111.23601
[336] Dumitrescu, D. T., Strömung an einer Luftblase im senkrechten Rohr, ZAMM Z. Angew. Math. Mech., 23, 139 (1943) · JFM 67.0352.03
[337] Dunning, M. J.; Haan, S. W., Analysis of weakly nonlinear three-dimensional Rayleigh-Taylor instability growth, Phys. Plasmas, 2, 1669 (1995)
[338] Durand, O.; Soulard, L., Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method, J. Appl. Phys., 111, 044901 (2012)
[339] Durand, O.; Soulard, L., Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions, J. Appl. Phys., 114, 194902 (2013)
[340] Durand, O.; Soulard, L., Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations, J. Appl. Phys., 117, 165903 (2015)
[341] Durand, O.; Soulard, L., Modeling from molecular dynamics simulations of ejecta production induced by shock-loaded metallic surfaces, J. Dyn. Behav. Mater., 3, 280 (2017)
[342] Durand, O.; Soulard, L.; Bourasseau, E.; Filippini, G., Investigation of the static and dynamic fragmentation of metallic liquid sheets induced by random surface fluctuations, J. Appl. Phys., 120, 045306 (2016)
[343] Dziewonski, A. M.; Anderson, D. L., Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297 (1981)
[344] Eckart, C., An analysis of the stirring and mixing processes in incompressible fluids, J. Mar. Res. VII, 265 (1948)
[345] Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Kilkenny, J. D.; Landen, O. L.; Moses, E. I.; Nikroo, A.; Petrasso, R.; Sangster, T. C.; Springer, P. T.; Batha, S.; Benedetti, R.; Bernstein, L.; Betti, R.; Bleuel, D. L.; Boehly, T. R.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Chen, K. C.; Clark, D. S.; Collins, G. W.; Dewald, E. L.; Divol, L.; Dixit, S.; Doeppner, T.; Edgell, D. H.; Fair, J. E.; Farrell, M.; Fortner, R. J.; Frenje, J.; Gatu johnson, M. G.; Giraldez, E.; Glebov, V. Yu.; Grim, G.; Hammel, B. A.; Hamza, A. V.; Harding, D. R.; Hatchett, S. P.; Hein, N.; Herrmann, H. W.; Hicks, D.; Hinkel, D. E.; Hoppe, M.; Hsing, W. W.; Izumi, N.; Jacoby, B.; Jones, O. S.; Kalantar, D.; Kauffman, R.; Kline, J. L.; Knauer, J. P.; Koch, J. A.; Kozioziemski, B. J.; Kyrala, G.; LaFortune, K. N.; Le Pape, S.; Leeper, R. J.; Lerche, R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; Macphee, A.; Mapoles, E. R.; Marinak, M. M.; Mauldin, M.; McKenty, P. W.; Meezan, M.; Michel, P. A.; Milovich, J.; Moody, J. D.; Moran, M.; Munro, D. H.; Olson, C. L.; Opachich, K.; Pak, A. E.; Parham, T.; Park, H.-S.; Ralph, J. E.; Regan, S. P.; Remington, B.; Rinderknecht, H.; Robey, H. F.; Rosen, M.; Ross, S.; Salmonson, J. D.; Sater, J.; Schneider, D. H.; Séguin, F. H.; Sepke, S. M.; Shaughnessy, D. A.; Smalyuk, V. A.; Spears, B. K.; Stoeckl, C.; Stoeffl, W.; Suter, L.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Weber, S. V.; Wegner, P. J.; Widman, K.; Wilke, M.; Wilson, D. C.; Yeamans, C. B.; Zylstra, A., Progress towards ignition on the National Ignition Facility, Phys. Plasmas, 20, 070501 (2013)
[346] Ejecta physics (2017). A special issue of Journal of Dynamic Behavior of Materials, 3, Buttler, W.T., Williams, R.J.R., Najjar, F.M. (eds.). Available online at: https://link.springer.com/journal/40870/3/2/page/1; Ejecta physics (2017). A special issue of Journal of Dynamic Behavior of Materials, 3, Buttler, W.T., Williams, R.J.R., Najjar, F.M. (eds.). Available online at: https://link.springer.com/journal/40870/3/2/page/1
[347] El-Ansary, N. F.; Hoshoudy, G. A.; Abd-Elrady, A. S.; Ayyad, A. H.A., Effects of surface tension and rotation on the Rayleigh-Taylor instability, Phys. Chem. Chem. Phys., 4, 1464 (2002)
[348] Elgowainy, A.; Ashgriz, N., The Rayleigh-Taylor instability of viscous fluid layers, Phys. Fluids, 9, 1635 (1997) · Zbl 1185.76619
[349] Emmons, H. W.; Chang, C. T.; Watson, B. C., Taylor instability of finite surface waves, J. Fluid Mech., 7, 177 (1960) · Zbl 0089.19501
[350] Erez, L.; Sadat, O.; Oron, D.; Erez, G.; Levin, L. A.; Shvarts, D.; Ben-Dor, G., Study of the membrane effect on turbulent mixing measurements in shock tubes, Shock Waves, 10, 241 (2000)
[351] Esteban, C.; Peimbert, M., The chemical enrichment by massive stars in Wolf-Rayet galaxies, Astron. Astrophys., 300, 78 (1995)
[352] Falize, É.; Bouquet, S.; Michaut, C., Scaling laws for radiating fluids: the pillar of laboratory astrophysics, Astrophys. Space Sci., 322, 107 (2009) · Zbl 1175.85007
[353] Falize, É.; Dizière, A.; Loupias, B., Invariance concepts and scalability of two-temperature astrophysical radiating fluids, Astrophys. Space Sci., 336, 201 (2011)
[354] Falize, É.; Loupias, B.; Ravasio, A.; Gregory, C. D.; Dizière, A.; Koenig, M.; Michaut, C., The scalability of the accretion column in magnetic cataclysmic variables: the POLAR project, Astrophys. Space Sci., 336, 81 (2011)
[355] Falize, É.; Michaut, C.; Bouquet, S., Similarity properties and scaling laws of radiation hydrodynamic flows in laboratory astrophysics, Astrophys. J., 730, 96 (2011)
[356] Falize, É.; Ravasio, A.; Loupias, B.; Diziere, A.; Gregory, C. D.; Michaut, C.; Busschaert, C.; Cavet, C.; Koenig, M., High-energy density laboratory astrophysics studies of accretion shocks in magnetic cataclysmic variables, High Energy Density Phys., 8, 1 (2012)
[357] Farley, D. R.; Peyser, T. A.; Logory, L. M.; Murray, S. D.; Burke, E. W., High Mach number mix instability experiments of an unstable density interface using a single-mode, nonlinear initial perturbation, Phys. Plasmas, 6, 4304 (1999)
[358] Fermi, E., Taylor instability at the boundary of two incompressible fluids, (Amaldi, E., (1965), Reprinted in The Collected Papers of Enrico Fermi, vol 2 (1951), University of Chicago Press: University of Chicago Press Chicago, Ill)
[359] Fermi, E.; von Neumann, J., Taylor Instability of Incompressible Liquids. US atomic Energy Commission Report AECU-2979 (1955)
[360] Fermigier, M.; Limat, L.; Wesfreid, J. E.; Boudinet, P.; Quilliet, C., Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer, J. Fluid Mech., 236, 349 (1992) · Zbl 0825.76192
[361] Feynman, R.; Leighton, R. B.; Sands, M., The Feynman Lectures on Physics (1964), Addison-Wesley: Addison-Wesley Boston, MA
[362] Field, G. B.; Goldsmith, D. W.; Habing, H. J., Cosmic-ray heating of the interstellar gas, Astrophys. J., 155, L149 (1969)
[363] Finn, J. M., Nonlinear interaction of Rayleigh-Taylor and shear instabilities, Phys. Fluids B, 5, 415 (1993)
[364] Fiorina, B.; Lele, S. K., An artificial nonlinear diffusivity method for supersonic reacting flows with shocks, J. Comput. Phys., 222, 246 (2007) · Zbl 1216.76030
[365] Flaig, M.; Plewa, T.; Keiter, P. A.; Drake, R. P.; Grosskopf, M.; Kuranz, C.; Park, H.-S., Design of a supernova-relevant Rayleigh-Taylor experiment on the National Ignition Facility I. Planar target design and diagnostics, High Energy Density Phys., 12, 35 (2014)
[366] Fleurot, N.; Cavailler, C.; Bourgade, J. L., The Laser Megajoule (LMJ) Project dedicated to inertial confinement fusion: Development and construction status, Fusion Eng. Des., 74, 147 (2005)
[367] Fontaine, G.; Mariani, C.; Martinez, S.; Jourdan, G.; Houas, L.; Vandenboomgaerde, M.; Souffland, D., An attempt to reduce the membrane effects in Richtmyer-Meshkov instability shock tube experiments, Shock Waves, 19, 285 (2009)
[368] Fortov, V. E., Extreme States of Matter: On Earth and in the Cosmos (2011), Springer: Springer Berlin · Zbl 1213.85002
[369] Foster, J. M.; Wilde, B. H.; Rosen, P. A.; Williams, R. J.R.; Blue, B. E.; Coker, R. F.; Drake, R. P.; Frank, A.; Keiter, P. A.; Khokhlov, A. M.; Knauer, J. P.; Knauer, J. P., High-energy-density laboratory astrophysics studies of jets and bow shocks, Astrophys. J. Lett., 634, L77 (2005)
[370] Fraley, G., Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction, Phys. Fluids, 29, 376 (1986) · Zbl 0592.76091
[371] Frederiksen, J. S.; Dix, M. R.; Kepert, S. M., Systematic energy errors and tendency toward cannonical equilibrium in atmospheric circulation models, J. Atmos. Sci., 53, 887 (1996)
[372] Frisch, U.; Kurien, S.; Pandit, R.; Pauls, W.; Ray, S. S.; Wirth, A.; Zhu, J.-Z., Hyperviscosity, Galerkin truncation and bottlenecks in turbulence, Phys. Rev. Lett., 101, 144501 (2008)
[373] Fryxell, B.A., Müller, E., Arnett, W.D., 1989. Hydrodynamics and nuclear burning. Preprint MPA-449. MPI für Astrophysik, Garching.; Fryxell, B.A., Müller, E., Arnett, W.D., 1989. Hydrodynamics and nuclear burning. Preprint MPA-449. MPI für Astrophysik, Garching.
[374] Fryxell, B.; Müller, E.; Arnett, D., Instabilities and clumping in SN 1987A. I. Early evolution in two dimensions, Astrophys. J., 367, 619 (1991)
[375] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; MacNeice, P.; Rosner, R.; Truran, J. W.; Tufo, H., FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, astrophys, J. Suppl. Ser., 131, 273 (2000)
[376] Fukumoto, Y.; Lugomer, S., Instability of vortex filaments in laser-matter interactions, Phys. Lett. A, 308, 375 (2003)
[377] Fureby, C.; Grinstein, F. F., Monotonically integrated large eddy simulation of free shear flows, AIAA J., 37, 544 (1999)
[378] Fureby, C.; Grinstein, F. F., Large eddy simulation of high-Reynolds-number free and wall-bounded flows, J. Comput. Phys., 181, 68 (2002) · Zbl 1051.76579
[379] Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; Plimpton, S. J., Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability, Phys. Fluids, 27, 084105 (2015)
[380] Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; Plimpton, S. J., Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability, Phys. Rev. Fluids, 1, 043403 (2016)
[381] Gamezo, V. N.; Khokhlov, A. M.; Oran, E. S.; Chtchelkanova, A. Y.; Rosenberg, R. O., Thermonuclear supernovae: simulations of the deflagration stage and their implications, Science, 299, 77 (2003)
[382] Garabedian, P. R., On steady-state generated by Taylor instability, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 241, 423 (1957) · Zbl 0078.16602
[383] Garanin, S. G., High-power lasers and their applications in high-energy-density physics studies, Phys.- Usp., 54, 415 (2011)
[384] Gardner, C. L.; Glimm, J.; McBryan, O.; Menikoff, R.; Sharp, D. H.; Zhang, Q., The dynamics of bubble growth for Rayleigh-Taylor unstable interfaces, Phys. Fluids, 31, 447 (1988) · Zbl 0641.76099
[385] Gardner, J. H.; Bodner, S. E.; Dahlburg, J. P., Numerical simulation of ablative Rayleigh-Taylor instability, Phys. Fluids B, 3, 1070 (1991)
[386] Garnier, J.; Masse, L., Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability, Phys. Plasmas, 12, 062707 (2005)
[387] Garnier, J.; Cherfils-Clérouin, C.; Holstein, P.-A., Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension, Phys. Rev. E, 68, 036401 (2003)
[388] Gauthier, S.; Bonnet, M., A \(K - \varepsilon\) model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability, Phys. Fluids A, 2, 1685 (1990) · Zbl 0711.76050
[389] Gawryszczak, A.; Guzman, J.; Plewa, T.; Kifonidis, K., Non-spherical core collapse supernovae, III. Evolution towards homology and dependence on the numerical resolution, Astron. Astrophys., 521, A38 (2010)
[390] Geers, T. L.; Hunter, K. S., An integrated wave-effects model for an underwater explosion bubble, J. Acoust. Soc. Amer., 111, 1584 (2002)
[391] George, E.; Glimm, J.; Li, X.-L.; Marchese, A.; Xu, Z.-L., A comparison of experimental theoretical, and numerical simulation Rayleigh-Taylor mixing rates, Proc. Natl. Acad. Sci. USA, 99, 2587 (2002)
[392] George, E.; Glimm, J.; Li, X.-L.; Li, Y.; Liu, X.-F., Influence of scale-breaking phenomena on turbulent mixing rates, Phys. Rev. E, 73, 016304 (2006)
[393] Georgievskaya, A. B.; Raevsky, V. A., A model of a source of shock wave metal ejection based on Richtmyer-Meshkov instability theory, J. Dynam. Behav. Mater., 3, 321 (2017)
[394] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgridscale eddy-viscosity model, Phys. Fluids A, 3, 1760 (1991) · Zbl 0825.76334
[395] Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. Comput. Phys., 125, 187 (1996) · Zbl 0848.76043
[396] Glendinning, S. G.; Bolstad, J.; Braun, D. G.; Edwards, M. J.; Hsing, W. W.; Lasinski, B. F.; Louis, H.; Miles, A.; Moreno, J.; Peyser, T. A.; Remington, B. A.; Robey, H. F.; Turano, E. J.; Verdon, C. P.; Zhou, Y., Effect of shock proximity on Richtmyer-Meshkov growth, Phys. Plasmas, 10, 1931 (2003)
[397] Glenzer, S. H.; MacGowan, B. J.; Michel, P.; Meezan, N. B.; Suter, L. J.; Dixit, S. N.; Kline, J. L.; Kyrala, G. A.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Divol, L.; Dzenitis, E.; Edwards, M. J.; Hamza, A. V.; Haynam, C. A.; Hinkel, D. E.; Kalantar, D. H.; Kilkenny, J. D.; Landen, O. L.; Lindl, J. D.; LePape, S.; Moody, J. D.; Nikroo, A.; Parham, T.; Schneider, M. B.; Town, R. P.J.; Wegner, P.; Widmann, K.; Whitman, P.; Young, B. K.F.; Van wonterghem, B.; Atherton, L. J.; Moses, E. I., Symmetric inertial confinement fusion implosions at ultra-high laser energies, Science, 327, 1228 (2010)
[398] Glimm, J.; Li, X. L., Validation of the Sharp-Wheeler bubble merger model from experimental and computational data, Phys. Fluids, 31, 2077 (1988)
[399] Glimm, J.; Sharp, D. H., Chaotic mixing as a renormalization group fixed point, Phys. Rev. Lett., 64, 2137 (1990) · Zbl 1050.76543
[400] Glimm, J.; Li, X. L.; Menikoff, R.; Sharp, D. H.; Zhang, Q., A numerical study of bubble interactions in Rayleigh-Taylor instability for compressible fluids, Phys. Fluids A, 2, 2046 (1990) · Zbl 0713.76049
[401] Glimm, J.; Saltz, D.; Sharp, D. H., Statistical evolution of chaotic fluid mixing, Phys. Rev. Lett., 80, 712 (1998)
[402] Glimm, J.; Grove, J. W.; Li, X. L.; Oh, W.; Sharp, D. H., A critical analysis of Rayleigh-Taylor growth rates, J. Comput. Phys., 169, 652 (2001) · Zbl 1011.76057
[403] Glimm, J.; Li, X.-L.; Lin, A.-D., Nonuniform approach to terminal velocity for single mode Rayleigh-Taylor instability, Acta Math. Appl. Sin., 18, 1 (2002) · Zbl 1114.76326
[404] Glimm, J.; Sharp, D. H.; Kaman, T.; Lim, H., New directions for Rayleigh-Taylor mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., A371, 20120183 (2013) · Zbl 1353.76027
[405] Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A., Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion, Phys. Rev. Lett., 113, 155003 (2014)
[406] Goncharov, V. N., Theory of the ablative Richtmyer-Meshkov instability, Phys. Rev. Lett., 82, 2091 (1999)
[407] Goncharov, V. N., Analytical model of nonlinear-single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett., 88, 134502 (2002)
[408] Goncharov, V. N.; Li, D., Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability, Phys. Rev. E, 71, 046305 (2005)
[409] Goncharov, V. N.; Betti, R.; McCrory, R. L.; Sorotokin, P.; Verdon, C. P., Self-consistent stability analysis of ablation fronts with large Froude numbers, Phys. Plasmas, 3, 1402 (1996)
[410] Gopalakrishnan, S. S.; Carballido-Landeira, J.; De Wit, A.; Knaepen, B., Relative role of convective and diffusive mixing in the miscible Rayleigh-Taylor instability in porous media, Phys. Rev. Fluids, 2, 012501 (2017)
[411] Gowardhan, A. A.; Ristorcelli, J. R.; Grinstein, F. F., The bipolar behavior of the Richtmyer-Meshkov instability, Phys. Fluids, 23, 071701 (2011)
[412] Grabovskii, E. V.; Mitrofanov, K. N.; Oleinik, G. M.; Porofeev, I. Y., X-ray backlighting of the periphery of an imploding multiwire array in the Angara-5-1 facility, Plasma Phys. Rep., 30, 121 (2004)
[413] Granero-Belinchón, R.; Shkoller, S., A Model for Rayleigh-Taylor Mixing and Interface Turnover, Multiscale Model. Simul., 15, 274 (2017) · Zbl 1362.76025
[414] Gréa, B.-J., The rapid acceleration model and the growth rate of a turbulent mixing zone induced by Rayleigh-Taylor instability, Phys. Fluids, 25, 015118 (2013)
[415] Gréa, B.-J.; Griffond, J.; Godeferd, F., Strain and stratification effects on the rapid acceleration of a turbulent mixing zone, ASME J. Fluids Eng., 136, 091203 (2014)
[416] Gréa, B.-J.; Burlot, A.; Godeferd, F.; Griffond, J.; Soulard, O.; Cambon, C., Dynamics and structure of unstably stratified homogeneous turbulence, J. Turbul., 1 (2016)
[417] Gréa, B.-J.; Burlot, A.; Griffond, J.; Llor, A., Challenging mix models on transients to self-similarity of unstably stratified homogeneous turbulence, ASME. J. Fluids Eng., 071204 (2016)
[418] Gregori, G.; Reville, B.; Miniati, F., The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers, Phys. Rep., 601, 1 (2015)
[419] Griffond, J.; Gréa, B.-J.; Soulard, O., Unstably stratified homogeneous turbulence as a tool for turbulent mixing modeling, ASME J. Fluids Eng., 136, 091201 (2014)
[420] (Grinstein, F. F., Coarse Grained Simulation and Turbulent Mixing (2016), Cambridge University Press)
[421] (Grinstein, F. F.; Margolin, L. G.; Rider, W. G., Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics (2007), Cambridge University Press: Cambridge University Press New York) · Zbl 1135.76001
[422] Grinstein, F. F.; Gowandhan, A. A.; Ristorcelli, J. R.; Wachtor, A. J., On coarse-grained simulations of turbulent material mixing, Phys. Scr., 86, 058203 (2012) · Zbl 1263.76034
[423] Guan, B.; Zhai, Z.; Si, T.; Lu, X.; Luo, X., Manipulation of three-dimensional Richtmyer-Meshkov instability by initial interfacial principal curvatures, Phys. Fluids, 29, 032106 (2017)
[424] Gull, S. F., A numerical model of the structure and evolution of young supernova remnants, Mon. Not. R. Astron. Soc., 161, 47 (1973)
[425] Guo, H.-Y.; Wang, L.-F.; Ye, W.-H.; Wu, J.-F.; Zhang, W.-Y., Weakly nonlinear Rayleigh-Taylor instability in incompressible fluids with surface tension, Chin. Phys. Lett., 34, 045201 (2017)
[426] Gupta, M. R.; Banerjee, R.; Mandal, L. K.; Bhar, R.; Pant, H. C.; Khan, M.; Srivastava, M. K., Effect of viscosity and surface tension on the growth of Rayleigh-Taylor instability and Richtmyer-Meshkov instability induced two fluid interfacial nonlinear structure, Indian J. Phys., 86, 471 (2012)
[427] Guzman, J.; Plewa, T., Non-spherical core-collapse supernovae: evolution towards homologous expansion, Nonlinearity, 22, 2775 (2009) · Zbl 1194.85007
[428] Haan, S. W., Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes, Phys. Rev. A, 39, 5812 (1989)
[429] Haan, S. W., Weakly nonlinear hydrodynamic instabilities in inertial fusion, Phys. Fluids B, 3, 2349 (1991)
[430] Haan, S. W.; Pollaine, S. M.; Lindl, J. D.; Suter, L. J.; Berger, R. L.; Powers, L. V.; Edward alley, W., Design and modeling of ignition targets for the National Ignition Facility, Phys. Plasmas, 2, 2480 (1995)
[431] Haan, S. W.; Lindl, J. D.; Callahan, D. A.; Clark, D. S.; Salmonson, J. D.; Hammel, B. A.; Atherton, L. J.; Cook, R. C.; Edwards, M. J.; Glenzer, S.; Hamza, A. V.; Hatchett, S. P.; Herrmann, M. C.; Hinkel, D. E.; Ho, D. D.; Huang, H.; Jones, O. S.; Kline, J.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Marinak, M. M.; Meyerhofer, D. D.; Milovich, J. L.; Moreno, K. A.; Moses, E. I.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Peterson, K.; Pollaine, S. M.; Ralph, J. E.; Robey, H. F.; Spears, B. K.; Springer, P. T.; Suter, L. J.; Thomas, C. A.; Town, R. P.; Vesey, R.; Weber, S. V.; Wilkens, H. L.; Wilson, D. C., Point design targets specifications and requirements for the 2010 ignition campaign on the National Ignition Facility, Phys. Plasmas., 18, 051001 (2011)
[432] Haas, J. F.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181, 41 (1987)
[433] Hachisu, I.; Matsuda, T.; Nomoto, K.; Shigeyama, T., Rayleigh-Taylor instabilities and mixing in the helium star models for type Ib/Ic supernovae, Astrophys. J., 368, L27 (1991)
[434] Haehn, N., Experimental Investigation of The Reactive Shock-Bubble Interaction (2012), University of Wisconsin-Madison, (Ph.D. dissertation)
[435] Haehn, N.; Ranjan, D.; Weber, C.; Oakley, J. G.; Anderson, M. H.; Bonazza, R., Experimental investigation of a twice-shocked spherical density inhomogeneity, Phys. Scr. T, 142, 014067 (2010)
[436] Haehn, N.; Weber, C.; Oakley, J.; Anderson, M.; Ranjan, D.; Bonazza, R., Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry, Shock Waves, 21, 225 (2011)
[437] Haehn, N.; Ranjan, D.; Weber, C.; Oakley, J.; Rothamer, D.; Bonazza, R., Reacting shock bubble interaction, Combust. Flame, 159, 1339 (2012)
[438] Hager, J. D.; Collins, T. J.B.; Smalyuk, V. A.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C., Study of Rayleigh-Taylor growth in laser irradiated planar \(SiO_2\) targets at ignition-relevant conditions, Phys. Plasmas, 20, 072707 (2013)
[439] Haines, B. M., Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions, Phys. Plasmas, 22, 082710 (2015)
[440] Haines, B. M.; Grinstein, F. F.; Schwarzkopf, J. D., Reynolds-averaged Navier-Stokes initialization and benchmarking in shock-driven turbulent mixing, J. Turbul., 14, 2, 46 (2013) · Zbl 1273.76140
[441] Haines, B. M.; Grinstein, F. F.; Welser-Sherrill, L.; Fincke, J. R., Simulation of material mixing in laser-driven shear experiments, Phys. Plasmas, 20, 022309 (2013)
[442] Halliday, A. N., Mixing, volatile loss and compositional change during impact-driven accretion of the Earth, Nature, 427, 505 (2004)
[443] Hammel, B. A.; Haan, S. W.; Clark, D. S.; Edwards, M. J.; Langer, S. H.; Marinak, M. M.; Patel, M. V.; Salmonson, J. D.; Scott, H. A., High-mode Rayleigh-Taylor growth in NIF ignition capsules, High Energy Density Phys., 6, 171 (2010)
[444] Hammel, B. A.; Scott, H. A.; Regan, S. P.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Epstein, R.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Kyrala, G. A.; Landen, O. L.; Langer, S. H.; Peterson, K.; Smalyuk, V. A.; Suter, L. J.; Wilson, D. C., Diagnosing and controlling mix in National Ignition Facility implosion experiments, Phys. Plasmas, 18, 056310 (2011)
[445] Hammer, N. J.; Janka, H.-Th.; Müller, E., Three-dimensional simulations of mixing instability in supernova explosion, Astrophys. J., 714, 1371 (2010)
[446] Hao, Y.; Prosperetti, A., The dynamics of vapor bubbles in acoustic pressure fields, Phys. Fluids, 11, 2008 (1999) · Zbl 1147.76407
[447] Harkness, R. P.; Wheeler, J. C., Classification of Supernovae, (Petschek, A., Supernovae (1990), Springer: Springer Berlin), 1
[448] Harris, E. G., Rayleigh-Taylor instabilities of a collapsing cylindrical shell in a magnetic field, Phys. Fluids, 5, 1057 (1962) · Zbl 0116.19904
[449] Harrison, W. J., The influence of viscosity on the oscillations of superposed fluids, Proc. Lond. Math. Soc., 2, 396 (1908) · JFM 39.0800.01
[450] Hartigan, P.; Foster, J. M.; Wilde, B. H.; Coker, R. F.; Rosen, P. A.; Hansen, J. F.; Blue, B. E.; Williams, R. J.R.; Carver, R.; Frank, A., Laboratory Experiments numerical simulations and astronomical observations of deflected supersonic jets: Application to HH 110, Astrophys. J., 705, 1073 (2009)
[451] Haugen, N. E.L.; Brandenburg, A., Inertial range scaling in numerical turbulence with hyperviscosity, Phys. Rev. E, 70, 026405 (2004)
[452] Hazak, G., Lagrangian formalism for the Rayleigh-Taylor instability, Phys. Rev Lett., 76, 4167 (1996) · Zbl 0922.76167
[453] Hazak, G.; Elbaz, Y.; Gardner, J. H.; Velikovich, A. L.; Schmitt, A. J.; Zalesak, S. T., Size distribution and energy spectrum in the mixed state induced by Rayleigh-Taylor instability, Phys. Rev. E, 73, 047303 (2006)
[454] He, C.-J.; Zhou, H.-B.; Hang, Y.-H., A numerical study on Rayleigh-Taylor instability of aluminum plates driven by detonation, Sci. China phys. Mech. Astron., 53, 195 (2010)
[455] He, S.; Ding, Y.; Miao, W.; Zhang, X.; Tu, S.; Yuan, Y.; Pu, Y.; Yan, J.; Wei, M.; Yin, C., Diagnostic for determining the mix in inertial confinement fusion capsule hotspot, Phys. Plasmas, 23, 072708 (2016)
[456] He, X.; Zhang, R.; Chen, S.; Doolen, G. D., On the three-dimensional Rayleigh-Taylor instability, Phys. Fluids, 11, 1143 (1999) · Zbl 1147.76410
[457] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys., 152, 642 (1999) · Zbl 0954.76076
[458] He, X. T.; Zhang, W. Y., Inertial fusion research in China, Eur. Phys. J. D, 44, 227 (2007)
[459] Hecht, J.; Alon, U.; Shvarts, D., Potential flow models of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts, Phys. Fluids, 6, 4019 (1994) · Zbl 0922.76169
[460] von Helmholtz, H., On discontinuous movements of fluid, Phil. Mag., 36, 337 (1868)
[461] Henry de frahan, M. T.; Belof, J. L.; Cavallo, R. M.; Raevsky, V. A.; Ignatova, O. N.; Lebedev, A.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; Johnsen, E.; LeBlanc, M. M., Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instablity, J. Appl. Phys., 117, 225901 (2015)
[462] Herrmann, M.; Moin, P.; Abarzhi, S. I., Nonlinear evolution of the Richtmyer-Meshkov instability, J. Fluid Mech., 612, 311 (2008) · Zbl 1151.76478
[463] Herrmann, M. C.; Tabak, M.; Lindl, J. D., Ignition scaling laws and their application to capsule design, Phys. Plasmas, 8, 2296 (2001)
[464] Hester, J. J., The Crab Nebula: An astrophysical chimera, Annu. Rev. Astron. Astrophys., 46, 127 (2008)
[465] Hester, J. J.; Stone, J. M.; Scowen, P. A., WFPC2 studies of the Crab Nebula. III. Magnetic Rayleigh-Taylor instabilities and the origin of the filaments, Astrophys. J., 456, 225 (1996)
[466] Hickel, S.; Adams, N. A.; Domaradzki, J. A., An adaptive local deconvolution method for implicit LES, J. Comput. Phys., 213, 413 (2006) · Zbl 1146.76607
[467] Hicks, E. P., Rayleigh-Taylor unstable flames—fast or faster?, Astrophys. J., 803, 72 (2015)
[468] Hide, R., Waves in a heavy viscous incompressible electrically conducting fluid of variable density, in the presence of a magnetic field, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 233, 376 (1955) · Zbl 0067.20203
[469] Hill, D. J.; Pantano, C.; Pullin, D. I., Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock, J. Fluid Mech., 557, 29 (2006) · Zbl 1094.76031
[470] Hill, R. D., Spark channel stability, Phys. Fluids B, 3, 1787 (1991)
[471] Hill, R. D.; Rinker, R. G.; Dale Wilson, H., Atmospheric nitrogen fixation by lightning, J. Atmos. Sci., 37, 179 (1980)
[472] Hillebrandt, W.; Höflich, P., The supernova 1987A in the large Magellanic cloud, Pep. Prog. Phys., 52, 1421 (1989)
[473] Hillebrandt, W.; Niemeyer, J. C., Type IA supernova explosion models, Annu. Rev. Astron. Astrophys., 38, 191 (2000)
[474] Hinds, W.; Ashley, A.; Kennedy, N.; Bucknam, P., Conditions for cloud settling and Rayleigh-Taylor instability, Aerosol Sci. Technol., 36, 1128 (2002)
[475] Hinkel, D. E.; Schneider, M. B.; Young, B. K.; Langdon, A. B.; Williams, E. A.; Rosen, M. D.; Suter, L. J., Creation of hot radiation environment in laser-driven targets, Phys. Rev. Lett., 96, 195001 (2006)
[476] Hinze, J., Turbulence (1975), McGraw-Hill
[477] Hirt, C. W., Computer studies of time-dependent turbulent flows, Phys. Fluids, 12, II-219 (1969) · Zbl 0296.76028
[478] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227 (1974) · Zbl 0292.76018
[479] Ho, S. P., Linear Rayleigh-Taylor stability of viscous fluids with mass and heat transfer, J. Fluid Mech., 101, 111 (1980) · Zbl 0458.76031
[480] Hogan, W. J.; Moses, E. I.; Warner, B. E.; Sorem, M. S.; Soures, J. M., The National Ignition Facilities, Nucl. Fusion, 41, 567 (2001)
[481] Holder, D. A.; Smith, A. V.; Barton, C. J.; Youngs, D. L., Shock-tube experiments on Richtmyer-Meshkov instability growth using an enlarged double-bump perturbatiion, Laser Part. Beams, 21, 411 (2003)
[482] Holloway, G., Representing topographic stress for large-scale ocean models, J. Phys. Oceanogr., 22, 1033 (1992)
[483] Holmes, R. L.; Dimonte, G.; Fryxell, B.; Gittings, M. L.; Grove, J. W.; Schneider, M.; Sharp, D. H.; Velikovich, A. L.; Weaver, R. P.; Zhang, Q., Richtmyer-Meshkov instability growth: experiment, simulation, and theory, J. Fluid Mech., 389, 55 (1999) · Zbl 0954.76026
[484] Holton, J. R., An Introduction to Dynamic Meteorology (1992), Academic Press
[485] Holyer, J. Y., Large amplitude progressive interfacial waves, J. Fluid Mech., 93, 433 (1979) · Zbl 0426.76021
[486] Hopkins, P. F.; Quataert, E.; Murray, N., Self-regulated star formation in galaxies via momentum input from massive stars, Mon. Not. R. Astron. Soc., 417, 950 (2011)
[487] Hopps, N.; Danson, C.; Duffield, S.; Egan, D.; Elsmere, S.; Girling, M.; Harvey, E., Overview of laser systems for the Orion facility at the AWE, Appl. Opt., 52, 3597 (2013)
[488] Hopps, N.; Oades, K.; Andrew, J.; Brown, C.; Cooper, G.; Danson, C.; Daykin, S., Comprehensive description of the Orion laser facility, Plasma Phys. Control. Fusion, 57, 064002 (2015)
[489] Houas, L.; Chemouni, I., Experimental investigation of Richtmyer-Meshkov instability in shock tube, Phys. Fluids, 8, 614 (1996)
[490] Houas, L.; Farhat, A.; Brun, R., Shock induced Rayleigh-Taylor instability in the presence of a boundary layer, Phys. Fluids, 31, 807 (1988)
[491] Houas, L.; Jourdan, G.; Schwaederlé, L.; Carrey, R.; Diaz, F., A new large cross-section shock tube for studies of turbulent mixing induced by interfacial hydrodynamic instability, Shock Waves, 12, 431 (2003)
[492] Houseman, G. A.; Molnar, P., Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere, Geophys. J. Int., 128, 125 (1997)
[493] Hsu, S. C.; Merritt, E. C.; Moser, A. L.; Awe, T. J.; Brockington, S. J.E.; Davis, J. S.; Adams, C. S., Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications, Phys. Plasmas, 19, 123514 (2012)
[494] Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A., Laboratory plasma physics experiments using merging supersonic plasma jets, J. Plasma Phys., 81, 345810201 (2015)
[495] Huang, Z.; De Luca, A.; Atherton, T. J.; Bird, M.; Rosenblatt, C.; Carles, P., Rayleigh-Taylor instability experiments with precise and arbitrary control of the initial interface shape, Phys. Rev. Lett., 99, 204502 (2007)
[496] Hunt, J.; Carruthers, D., Rapid distortion theory and the problems of turbulence, J. Fluids Mech., 502, 233 (1990) · Zbl 0692.76054
[497] Hunt, J.; Kevlahan, N., Rapid distortion theory and the structure of turbulence, (Dracos, T.; etal., New Approaches and Concepts in Turbulence (1993), Birkhauser Verlag: Birkhauser Verlag Basel)
[498] Hunt, J. N., A note on instability at a viscous interface, Quart. J. Mech. Appl. Math., 14, 359 (1961) · Zbl 0104.20703
[499] Hunt, J. T.; Speck, D. R., Present and future performance of the Nova laser system, Opt. Eng., 28, 461 (1989)
[500] Hurricane, O. A.; Burke, E.; Maples, S.; Viswanathan, M., Saturation of Richtmyer’s impulsive model, Phys. Fluids, 12, 2148 (2000) · Zbl 1184.76238
[501] Hurricane, O. A.; Hansen, J. F.; Robey, H. F.; Remington, B. A.; Bono, M. J.; Harding, E. C.; Drake, R. P.; Kuranz, C. C., A high energy density shock driven Kelvin-Helmholtz shear layer experiment, Phys. Plasmas, 16, 056305 (2009)
[502] Hurricane, O. A.; Herrmann, M. C., High-energy-density physics at the National Ignition Facility, Annu. Rev. Nucl. Part. Sci., 67, 213 (2017)
[503] Hurricane, O. A.; Smalyuk, V. A.; Raman, K.; Schilling, O.; Hansen, J. F.; Langstaff, G.; Martinez, D.; Park, H.-S.; Remington, B. A.; Robey, H. F.; Greenough, J. A.; Wallace, R.; Di Stefano, C. A.; Drake, R. P.; Marion, D.; Krauland, C. M.; Kuranz, C. C., Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment, Phys. Rev. Lett., 109, 15 (2012)
[504] Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Dewald, E. L.; Dittrich, T. R.; Doppner, T.; Hinkel, D. E.; Berzak hopkins, L. F.; Kline, J. L.; Le Pape, S.; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Tommasini, R., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature, 506, 343 (2014)
[505] Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A., The high-foot implosion campaign on the National Ignition Facility, Phys. Plasmas, 21, 056314 (2014)
[506] Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations (1999), Wiley: Wiley New York · Zbl 1047.34001
[507] Ikegawa, T.; Nishihara, K., Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth, Phys. Rev. Lett., 89, 115001 (2002)
[508] Ikegawa, T.; Nishihara, K., Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes, Phys. Rev. E, 67, 026404 (2003)
[509] Ingraham, R. L., Taylor instability of the interface between superposed fluids-solution by successive approximations, Proc. Phys. Soc. London B, 67, 748 (1954) · Zbl 0056.42902
[510] Inogamov, N. A., Turbulent stage of the Rayleigh-Taylor instability, Sov. Tech. Phys. Lett., 4, 299 (1978)
[511] Inogamov, N. A., The role of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in astrophysics: an Introduction, Astrophys. Space Phys., 10, 1 (1999)
[512] Inogamov, N. A., Statistics of long-wavelength fluctuations and the expansion rate of Richtmyer-Meshkov turbulence zone, JETP Lett. 75, 547 (2002)
[513] Inogamov, N. A.; Abarzhi, S. I., Dynamics of fluid surface in multidimension, Physica D, 87, 339 (1995) · Zbl 1194.37156
[514] Inogamov, N. A.; Oparin, A. M., Development of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in three-dimensional space: topology of vortex surfaces, JETP Lett., 69, 739 (1999)
[515] Inogamov, N. A.; Chekhlov, A. V.; Dem’yanov, Al. Yu.; Anisimov, S. I.; Belotserkovskii, O. M., (Dautray, R., Proceedings of the Third International Workshop on Physics Compressible Turbulent Mixing (1991), Commissariat Energie Atomique: Commissariat Energie Atomique Cesta, France), 409
[516] Inoue, T.; Yamazaki, R.; Inutsuka, S., Turbulence and magnetic field amplification in supernova remnants: interactions between a strong shock wave and multiphase interstellar medium, Astrophys. J., 695, 825 (2009)
[517] Isenberg, C., The Science of Soap Films and Soap Bubbles (1992), Dover · Zbl 0447.76001
[518] Ishihara, T.; Yoshida, K.; Kaneda, Y., Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow, Phys. Rev. Lett., 88, 154501 (2002)
[519] Ishihara, T.; Gotoh, T.; Kaneda, Y., Study of high-Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech., 41, 165 (2008) · Zbl 1157.76017
[520] Isobe, H.; Miyagoshi, T.; Shibata, K.; Yokoyama, T., Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability, Nature, 434, 478 (2005)
[521] Isobe, H.; Miyagoshi, T.; Shibata, K.; Yokoyama, T., Three-dimensional simulation of solar emerging flux using the Earth Simulator I. Magnetic Rayleigh-Taylor instability at the top of the emerging flux as the origin of filamentary structure, Publ. Astron. Soc. Japan, 58, 423 (2006)
[522] Jacobs, J. W.; Catton, I., Three-dimensional Rayleigh-Taylor instability part 1. Weakly nonlinear theory, J. Fluid Mech., 187, 329 (1988) · Zbl 0642.76066
[523] Jacobs, J. W.; Catton, I., Three-dimensional Rayleigh-Taylor instability part 2. Experiment, J. Fluid Mech., 187, 353 (1988) · Zbl 0642.76066
[524] Jacobs, J. W.; Dalziel, S. B., Rayleigh-Taylor instability in complex stratifications, J. Fluid Mech., 542, 251 (2005) · Zbl 1078.76501
[525] Jacobs, J. W.; Krivets, V. V., Experiments on the late-time development of single-mode Richtmyer-Meshkov instability, Phys. Fluids, 17, 034105 (2005) · Zbl 1187.76240
[526] Jacobs, J. W.; Sheeley, J. M., Experimental study of incompressible Richtmyer-Meshkov instability, Phys. Fluids, 8, 405 (1996)
[527] Jacobs, J. W.; Klein, D. L.; Jenkins, D. G.; Benjamin, R. F., Instability growth patterns of a shock-accelerated thin fluid layer, Phys. Rev. Lett., 70, 583 (1993)
[528] Jacobs, J. W.; Jenkins, D. G.; Klein, D. L.; Benjamin, R. F., Nonlinear growth of the shock-accelerated instability of a thin fluid layer, J. Fluid Mech., 295, 23 (1995)
[529] Jacobs, J. W.; Krivets, V. V.; Tsiklashvili, V.; Likhachev, O. A., Experiments on the Richtmyer-Meshkov instability with an imposed random initial perturbation, Shock Waves, 23, 407 (2013)
[530] Janka, H-Th.; Langanke, K.; Marek, A.; Martínez-Pinedo, G.; Müller, B., Theory of core-collapse supernovae, Phys. Rep., 442, 38 (2007)
[531] Jeanloz, R., Shock wave equation of state and finite strain theory, J. Geophys. Res., 94, 5873 (1989)
[532] Jensen, B. J.; Cherne, F. J.; Prime, M. B.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G., Jet formation in cerium metal to examine material strength, J. Appl. Phys., 118, 195903 (2015)
[533] Jevons, W. S., On the cirrous form of cloud London Edinburgh Dublin, Phil. Mag. J. Sci IV, 14, 22 (1857)
[534] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202 (1996) · Zbl 0877.65065
[535] Jiang, H.; Dong, G.; Chen, X.; Li, B., A parameterization of the Richtmyer-Meshkov instability on a premixed flame interface induced by the successive passages of shock waves, Combust. Flame, 169, 229 (2016)
[536] Johnson, B. M., On the interaction between turbulence and a planar rarefaction, Astrophys. J., 784, 117 (2014)
[537] Johnson, B. M., Buoyancy instability of homologous implosions, J. Fluid Mech., 774, R4 (2015) · Zbl 1331.76104
[538] Jones, M. A.; Jacobs, J. W., A membraneless experiment for the study of Richtmyer-Meshkov instability of a shock-accelerated gas interface, Phys. Fluids, 9, 3078 (1997)
[539] Jones, T. W.; De Young, D. S., Magnetohydrodynamic simulations of relic radio bubbles in clusters, Astrophys. J., 624, 586 (2005)
[540] Jourdan, G.; Houas, L., Experimental investigation of Richtmyer-Meshkov instability before and after reflected shock compression, Phys. Fluids, 8, 1353 (1996)
[541] Jourdan, G.; Houas, L., High-amplitude single-mode perturbation evolution at the Richtmyer-Meshkov instability, Phys. Rev. Lett., 95, 204502 (2005)
[542] Jourdan, G.; Houas, L.; Billiotte, M., Density evolution within a shock accelerated gaseous interface, Phys. Rev. Lett., 78, 452 (1996)
[543] Jun, B. I., Interaction of a pulsar wind with the expanding supernova remnant, Astrophys. J., 499, 282 (1998)
[544] Jun, B. I.; Norman, M. L., Interaction of Rayleigh-Taylor fingers and circumstellar cloudlets in young supernova remnants, Astrophys. J. Lett., 468, L59 (1996)
[545] Jun, B. I.; Norman, M. L., On the origin of strong magnetic fields in young, supernova remnants, Astrophys. J., 465, 800 (1996)
[546] Jun, B. I.; Norman, M. L., On the origin of radial magnetic fields in young supernova remnants, supernova remnants, Astrophys. J., 472, 245 (1996)
[547] Kadau, K.; Germann, T. C.; Hadjiconstantinou, N. G.; Lomdahl, P. S.; Dimonte, G.; Holian, B. L.; Alder, B. J., Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability, Proc. Natl. Acad. Sci. USA, 101, 5851 (2004) · Zbl 1063.76029
[548] Kadau, K.; Rosenblatt, C.; Barber, J. L.; Germann, T. C.; Huang, Z.; Carlès, P.; Alder, B. J., The importance of fluctuations in fluid mixing, Proc. Natl. Acad. Sci. USA, 104, 7741 (2007)
[549] Kamath, C.; Gezahegne, A.; Miller, P., Identification of coherent structures in three-dimensional simulations of a fluid-mix problem, Int. J. Image Graph., 9, 389 (2009)
[550] Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Castor, J.; Wallace, R.; Rubenchik, A.; Fryxell, B. A., Supernova-relevant hydrodynamic instability experiments on the Nova laser, Astrophys. J. Lett., 478, L75 (1997)
[551] Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Drake, R. P.; Fryxell, B. A.; Tessier, R.; Moore, K., Scaling supernova hydrodynamics to the laboratory, Phys. Plasmas, 6, 2065 (1999)
[552] Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Muller, E.; Fryxell, B. A.; Teyssier, R., Two-dimensional versus three-dimensional supernova hydrodynamic instability growth, Astrophys. J., 528, 989 (2000)
[553] Kaneda, Y.; Ishihara, T.; Yokokawa, M.; Itakura, K.; Uno, A., Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Phys. Fluids, 15, L21 (2003) · Zbl 1185.76191
[554] Karkhanis, V.; Ramaprabhu, P.; Buttler, W. T.; Hammerberg, J. E.; Cherne, F. J.; Andrews, M. J., Ejecta production from second shock: Numerical simulations and experiments, J. Dyn. Behav. Mater., 3, 265 (2017)
[555] Kartoon, D.; Oron, D.; Arazi, L.; Shvarts, D., Three-dimensional multimode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at all density ratios, Laser Part. Beams, 21, 327 (2003)
[556] Kelvin, Lord, Hydrokinetic solutions and observations, Phil. Mag., 42, 362 (1871)
[557] Keiter, P. A.; Trantham, M.; Malamud, G.; Klein, S. R.; Davis, J.; VanDervort, R.; Shvarts, D.; Drake, R. P.; Stone, J. M.; Fraenkel, M.; Frank, Y., Design of laboratory experiments to study radiation-driven implosions, High Energy Density Phys., 22, 37 (2017)
[558] Kendrew, S.; Simpson, R.; Bressert, E.; Povich, M. S.; Sherman, R.; Lintott, C. J.; Robitaille, T. P.; Schawinski, K.; Wolf-Chase, G., The Milky Way Project: A statistical study of massive star formation associated with infrared bubbles, Astrophys. J., 755, 71 (2012)
[559] Kennard, E. H., Kinetic Theory of Gases (1938), McGraw-Hill: McGraw-Hill New York
[560] Kerr, R. M., Simulation of Rayleigh-Taylor flows using vortex blobs, J. Comput. Phys., 76, 48 (1988) · Zbl 0638.76057
[561] Keskinen, M. J.; Szuszczewicz, E. P.; Ossakow, S. L.; Holmes, J. C., Nonlinear theory and experimental observations of the local collisional Rayleigh-Taylor instability in a descending equatorial spread F ionosphere, J. Geophys. Res., 86, 5785 (1981)
[562] Khokhlov, A. M., Propagation of turbulent flames in supernovae, Astrophys. J., 449, 695 (1995)
[563] Khokhlov, A. M.; Oran, E. S.; Chtchelkanova, A. Yu; Wheeler, J. C., Interaction of a shock with a sinusoidally perturbed flame, Combust. Flame, 117, 99 (1999)
[564] Khokhlov, A. M.; Oran, E. S.; Thomas, G. O., Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flames, Combust. Flame, 117, 323 (1999)
[565] Kida, S.; Orszag, S. A., Energy and spectral dynamics in forced compressible turbulence, J. Sci. Comput., 5, 85 (1990) · Zbl 0721.76041
[566] Kifonidis, K.; Plewa, T.; Janka, H.-Th.; Muller, E., Nucleosynthesis and clump formation in a core-collapse supernova, Astrophys. J. Lett., 531, L123 (2000)
[567] Kifonidis, K.; Plewa, T.; Janka, H.-Th.; Muller, E., Non-spherical core collapse supernovae, I. Neutrino-driven convection, Rayleigh-Taylor instability, and the formation and propagation of metal clumps, Astron. Astrophys., 408, 621 (2003)
[568] Kifonidis, K.; Plewa, T.; Scheck, L.; Janka, H.-Th.; Muller, E., Non-spherical core collapse supernovae, II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A, Astron. Astrophys., 453, 661 (2006)
[569] Kilkenny, J. D.; Glendinning, S. G.; Haan, S. W.; Hammel, B. A.; Lindl, J. D.; Munro, D.; Remington, B. A.; Weber, S. V.; Knauer, J. P.; Verdon, C. P., A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion, Phys. Plasmas, 1, 1379 (1994)
[570] Klein, S. R.; Deininger, M.; Gillespie, R. S.; Di Stefano, C. A.; MacDonald, M. J.; Manuel, M. J.E.; Young, R. P.; Kuranz, C. C.; Keiter, P. A.; Drake, R. P., Novel target fabrication using 3D printing developed at University of Michigan, J. Phys.: Conf. Ser., 713, 012008 (2016)
[571] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR, 30, 301 (1941) · JFM 67.0850.06
[572] Kotelnikov, A. D.; Ray, J.; Zabusky, N. J., Vortex morphologies on reaccelerated interfaces: Visualization, quantification and modeling of one- and two-mode compressible and incompressible environments, Phys. Fluids, 12, 3245 (2000) · Zbl 1184.76301
[573] Kraichnan, R. H., Structure of isotropic turbulence at very large Reynolds number, J. Fluid Mech., 5, 497 (1959) · Zbl 0093.41202
[574] Kraichnan, R. H., Direct-interaction approximation for a system of several interacting shear waves, Phys. Fluids, 6, 1603 (1963) · Zbl 0122.44204
[575] Kraichnan, R. H., Direct-interaction approximation for shear and thermally driven turbulence, Phys. Fluids, 7, 1048 (1964)
[576] Kraichnan, R. H., Inertial range spectrum of hydromagnetic turbulence, Phys. Fluids, 8, 1385 (1965)
[577] Kraichnan, R. H., Inertial ranges in two dimensional turbulence, Phys. Fluids, 10, 1417 (1967)
[578] Kraichnan, R. H., Inertial-range transfer in two- and three-dimensional turbulence, J. Fluid Mech., 47, 525 (1971) · Zbl 0224.76053
[579] Kraichnan, R. H., Eddy viscosity in two and three dimensions, J. Atmos. Sci., 33, 1521 (1976)
[580] Kraichnan, R.; Montgomery, D., Two-dimensional turbulence, Rep. Progr. Phys., 43, 547 (1980)
[581] Kramer, R. M.J.; Pullin, D. L.; Meiron, D. I.; Pantano, C., Shock-resolved Navier-Stokes simulation of the Richtmyer-Meshkov instability start-up at a light-heavy interface, J. Fluid Mech., 642, 421 (2010) · Zbl 1183.76728
[582] Krasny, R., Desingularization of periodic vortex sheet roll-up, J. Comput. Phys., 65, 292 (1986) · Zbl 0591.76059
[583] Krechetnikov, R., Rayleigh-Taylor and Richtmyer-Meshkov instabilities of flat and curved interfaces, J. Fluids Mech., 625, 387 (2009) · Zbl 1171.76375
[584] Kritcher, A. L.; Döppner, T.; Swift, D.; Hawreliak, J.; Collins, G.; Nilsen, J.; Bachmann, B., Probing matter at Gbar pressures at the NIF, High Energy Density Phys., 10, 27 (2014)
[585] Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W., Turbulent mixing induced by Richtmyer-Meshkov instability, AIP Conf. Proc., 1793, 150003 (2017)
[586] Kucherenko, Yu. A.; Shibarshov, L. I.; Chitaikin, V. I.; Balabin, S. I.; Pylaev, A. P., Experimental study of the gravitational turbulent mixing self- similar mode, (Dautray, R., Proceedings of the Third International Workshop on Physics Compressible Turbulent Mixing. Commissariat Energie Atomique (1991), Cesta: Cesta France), 427
[587] Kuchugov, P.; Zmitrenko, N.; Rozanov, V.; Yanilkin, Yu.; Sin’kova, O.; Statsenko, V.; Chernyshova, O., The evolution model of the Rayleigh-Taylor instability development, J. Russ. Laser Res., 33, 517 (2012)
[588] Kuchugov, P.; Rozanov, V. B.; Zmitrenko, N. V., The differences in the development of Rayleigh-Taylor instability in 2D and 3D geometries, Plasma Phys. Rep., 40, 451 (2014)
[589] Kuhl, A. L., Spherical mixing layers in explosions, (Bowen, J. R., Dynamics of Exothermicity (1996), Gordon and Breach: Gordon and Breach Amsterdam, Netherlands), 291
[590] Kuhl, A. L., On the structure of self-similar detonation waves in TNT charges, Combust. Explosion Shock Waves, 511, 72 (2015)
[591] Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Reichenbach, H., Gasdynamic model of turbulent combustion in TNT explosions, Proc. Combust. Inst., 33, 2177 (2011)
[592] Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J., Spherical combustion clouds in explosions, Shock Waves, 23, 233 (2013)
[593] Kull, H. J., Incompressible description of Rayleigh-Taylor instabilities in laser-ablated plasmas, Phys. Fluids B, 1, 170 (1989)
[594] Kull, H. J., Theory of the Rayleigh-Taylor instability, Phys. Rep., 206, 197 (1991)
[595] Kuramitsu, Y.; Chu, H. H.; Hau, L. N.; Chen, S. H.; Liu, Y. L.; Hsieh, C. Y.; Sakawa, Y.; Hideaki, T.; Wang, J., Relativistic plasma astrophysics with intense lasers, High Energy Density Phys., 17, 198 (2015)
[596] Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T., Model experiment of cosmic ray acceleration due to an incoherent wakefield induced by an intense laser pulse, Phys. Plasmas, 18, 010701 (2011)
[597] Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T., Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse, Phys. Rev. E, 83, 026401 (2011)
[598] Kuramitsu, Y.; Ohnishi, N.; Sakawa, Y.; Morita, T.; Tanji, H.; Ide, T.; Nishio, K., Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability, Phys. Plasmas, 23, 032126 (2016)
[599] Kuramitsu, Y.; Sakawa, Y.; Waugh, J. N.; Gregory, C. D.; Morita, T.; Dono, S.; Aoki, H.; Tanji, H.; Loupias, B.; Koenig, M.; Woolsey, N., Jet formation in counterstreaming collisionless plasmas, Astrophys. J. Lett., 707, L137 (2009)
[600] Kuranz, C. C.; Drake, R. P.; Leibrandt, D. R.; Harding, E. C.; Robey, H. F.; Miles, A. R.; Blue, B. E.; Hansen, J. F.; Louis, H.; Bono, M.; Knauer, J.; Arnett, D.; Meakin, C. A., Progress toward the study of laboratory scale, astrophysically relevant, turbulent plasmas, Astrophys. Space Sci., 298, 9 (2005) · Zbl 1132.85328
[601] Kuranz, C. C.; Drake, R. P.; Harding, E. C.; Grosskopf, M. J.; Robey, H. F.; Remington, B. A.; Edwards, M. J.; Miles, A. R.; Perry, T. S.; Plewa, T.; Hearn, N. C.; Knauer, J. P.; Arnett, D.; Leibrandt, D. R., Two-dimensional blast-wave-driven Rayleigh-Taylor instability: experiment and simulation, Astrophys. J., 696, 749 (2009)
[602] Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Budde, A.; Krauland, C.; Marion, D. C.; Visco, A. J.; Ditmar, J. R.; Robey, H. F.; Remington, B. A.; Miles, A. R.; Cooper, A. B.R.; Sorce, C.; Plewa, T.; Hearn, N. C.; Killibrew, K. L.; Knauer, J. P.; Arnett, D.; Donajkowski, T., Three-dimensional blast-wave-driven Rayleigh-Taylor instability and the effects of long-wavelength modes, Phys. Plasmas, 16, 156310 (2009)
[603] Kuranz, C. C.; Park, H.-S.; Remington, B. A.; Drake, R. P.; Miles, A. R.; Robey, H. F.; Kilkenny, J. D.; Keane, C. J.; Kalantar, D. H.; Huntington, C. M.; Krauland, C. M.; Harding, E. C.; Grosskopf, M. J.; Marion, D. C.; Doss, F. W.; Myra, E.; Maddox, B.; Young, B.; Kline, J. L.; Kyrala, G.; Plewa, T.; Wheeler, J. C.; Arnett, W. D.; Wallace, R. J.; Giraldez, E.; Nikroo, A., Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility, Astophys. Space Sci., 336, 207 (2011)
[604] Lamb, H., Hydrodynamics (1932), Dover: Dover New York · JFM 26.0868.02
[605] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1987), Pergamon: Pergamon Oxford · Zbl 0655.76001
[606] Lanier, N. E.; Barnes, C. W.; Batha, S. H.; Day, R. D.; Magelssen, G. R.; Scott, J. M.; Dunne, A. M.; Parker, K. W.; Rothman, S. D., Multimode seeded Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma system, Phys. Plasmas, 10, 1616 (2003)
[607] Latini, M., Simulations and Analysis of Two- and Three-Dimensional Single-Mode Richtmyer-Meshkov instability Using Weighted Essentially Non-Oscillatory and Vortex Methods (Ph.D. thesis) (2007), California Institute of Technology
[608] Latini, M.; Schilling, O.; Don, W. S., High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: comparison to experimental data an to amplitude growth model predictions, Phys. Fluids, 19, 024104 (2007) · Zbl 1146.76456
[609] Latini, M.; Schilling, O.; Don, W. S., Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability, J. Comput. Phys. 221, 805, 805 (2007) · Zbl 1107.65338
[610] Lawrence, G. A.; Browand, F. K.; Redekopp, L. G., The instability of a sheared density interface, Phys. Fluids A, 3, 2360 (1991) · Zbl 0825.76902
[611] Lawrie, A. G.W., On Rayleigh-Taylor Mixing: Confinement by Stratification and Geometry (Ph.D. dissertation) (2009), University of Cambridge: University of Cambridge Cambridge, UK
[612] Lawrie, A. G.W.; Dalziel, S. B., Turbulent diffusion in tall tubes. I. Models for Rayleigh-Taylor instability, Phys. Fluids, 23, 085109 (2011)
[613] Lawrie, A. G.W.; Dalziel, S. B., Turbulent diffusion in tall tubes. II. Confinement by stratification, Phys. Fluids, 23, 085110 (2011)
[614] Layes, G.; Le Métayer, O., Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion, Phys. Fluids, 19, 042105 (2007) · Zbl 1146.76458
[615] Layes, G.; Jourdan, G.; Houas, L., Distortion of a spherical gaseous interface accelerated by a plane shock wave, Phys. Rev. Lett., 91, 174502 (2003)
[616] Layes, G.; Jourdan, G.; Houas, L., Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity, Phys. Fluids, 17, 028103 (2005) · Zbl 1187.76298
[617] Layes, G.; Jourdan, G.; Houas, L., Experimental study on a plane shock wave accelerating a gas bubble, Phys. Fluids, 21, 074102 (2009) · Zbl 1183.76297
[618] Layzer, D., On the instability of superposed fluids in a gravitational field, Astrophys. J., 122, 1 (1955)
[619] Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A., Effect of discrete wires on the implosion dynamics of wire array Z pinches, Phys. Plasmas, 8, 3734 (2001)
[620] Lebedev, S. V.; Ampleford, D. J.; Bland, S. N.; Bott, S. C.; Chittenden, J. P.; Goyer, J.; Jennings, C., Physics of wire array Z-pinch implosions: experiments at Imperial College, Plasma Phys. Control. Fusion, 47, A91 (2005)
[621] Lee, H. G.; Kim, J., Numerical simulation of the three-dimensional Rayleigh-Taylor instability, Comput. Math. Appl., 66, 1466 (2013)
[622] Lee, H. G.; Kim, K.; Kim, J., On the long time simulation of the Rayleigh-Taylor instability, Internat. J. Numer. Methods Engrg., 85, 1633 (2011) · Zbl 1217.76043
[623] Leith, C. E., Diffusion approximation for two-dimensional turbulence, Phys. Fluids, 11, 671 (1968)
[624] Leith, C. E., Stochastic backscatter in a subgrid-scale model: plane shear mixing layer, Phys. Fluids A, 2, 297 (1990)
[625] LeLevier, R., Lasher, G.J., Bjorklund, F., 1955. Effect of a density gradient on Taylor instability (No. UCRL-4459). Radiation Lab., Univ. of Calif., Livermore.; LeLevier, R., Lasher, G.J., Bjorklund, F., 1955. Effect of a density gradient on Taylor instability (No. UCRL-4459). Radiation Lab., Univ. of Calif., Livermore.
[626] Lemaigre, L.; Budroni, M. A.; Riolfo, L. A.; Grosfils, P.; De Wit, A., Asymmetric Rayleigh-Taylor and double-diffusive fingers in reactive systems, Phys. Fluids, 25, 014103 (2013)
[627] Lesieur, M., Turbulence in Fluids (1990), Kluwer: Kluwer Dordrecht · Zbl 0748.76004
[628] Leslie, D. C., Developments in the Theory of Turbulence (1973), Clarendon: Clarendon Oxford, UK · Zbl 0273.76034
[629] Lewis, D. J., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes II, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 202, 81 (1950)
[630] Li, B.; Zhao, F. P.; Wu, H. A.; Luo, S. N., Microstructure effects on shock-induced surface jetting, J. Appl. Phys., 115, 073504 (2014)
[631] Li, C.; Kailasanath, K.; Book, D. L., Mixing enhancement by expansion waves in supersonic flows of different densities, Phys. Fluids A, 3, 1369 (1991)
[632] Li, J. W.; Pei, W. B.; He, X. T.; Li, J. H.; Zheng, W. D.; Zhu, S. P.; Kang, W., Preheat of radiative shock in double-shell ignition targets, Phys. Plasmas, 20, 082707 (2013)
[633] Li, M.; Zhu, Q.; Li, G., Effect of surface tension and viscosity on bubble growth of single mode Rayleigh-Taylor instability, Appl. Math. Mech., 37, 1607 (2016) · Zbl 1374.76226
[634] Li, X.; Chu, V. H., Rayleigh-Taylor Instabilities by overturning experiments, J. Hydrodynamics Ser. B, 19, 303 (2007)
[635] Li, X. L.; Zhang, Q., A comparative numerical study of the Richtmyer-Meshkov instability with nonlinear analysis in two and three dimensions, Phys. Fluids, 9, 3069 (1997)
[636] Li, Y.; Luo, X., Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability, Acta Phys. Sin., 63, 85203 (2014)
[637] Liang, H.; Shi, B. C.; Guo, Z. L.; Chai, Z. H., Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E, 89, 053320 (2014)
[638] Liang, H.; Li, Q. X.; Shi, B. C.; Chai, Z. H., Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability, Phys. Rev. E, 93, 033113 (2016)
[639] (Libby, S. B.; Van Bibber, K. A., Edward Teller Centennial Symposium: Modern Physics and the Scientific Legacy of Edward Teller: Livermore, CA, USA, 28 May 2008 (2010), World Scientific)
[640] Likhachev, O. A.; Jacobs, J. W., A vortex model for Richtmyer-Meshkov instability accounting for finite Atwood number, Phys. Fluids, 17, 031704 (2005) · Zbl 1187.76314
[641] Lin, H.; Storey, B. D.; Szeri, A. J., Rayleigh-Taylor instability of violently collapsing bubbles, Phys. Fluids, 14, 2925 (2002) · Zbl 1185.76229
[642] Linden, P. F.; Redondo, J. M.; Youngs, D. L., Molecular mixing in Rayleigh-Taylor instability, J. Fluid Mech., 265, 97 (1994)
[643] Lindl, J. D., Development of the indirectdrive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas, 2, 3933 (1995)
[644] Lindl, J. D., Inertial Confinement Fusion (1998), Springer
[645] Lindl, J. D.; Amendt, P.; Berger, R. L.; Glendinning, S. G.; Glenzer, S. H.; Haan, S. W.; Kauffman, R. L.; Landen, O. L.; Suter, L. J., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas, 11, 339 (2004)
[646] Liu, H.; Xiao, Z.-L., Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability, Phys. Rev. E, 93, 053112 (2016)
[647] Liu, W. H.; Wang, L. F.; Ye, W. H.; He, X. T., Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Plasmas, 19, 042705 (2012)
[648] Liu, W. H.; Wang, L. F.; Ye, W. H.; He, X. T., Temporal evolution of bubble tip velocity in classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Plasmas, 20, 062101 (2013)
[649] Liu, Y.; Grieves, B., Ejecta production and transport from a shocked Sn coupon, ASME J. Fluids Eng., 136, 091202 (2014)
[650] Livescu, D., Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371, 20120185 (2013) · Zbl 1353.76028
[651] Livescu, D.; Ristorcelli, J. R., Buoyancy-driven variable-density turbulence, J. Fluid Mech., 591, 43 (2007) · Zbl 1125.76353
[652] Livescu, D.; Ristorcelli, J. R.; Petersen, M. R.; Gore, R. A., New phenomena in variable-density Rayleigh-Taylor turbulence, Phys. Scr. T, 142, 014015 (2010)
[653] Livescu, D.; Wei, T.; Petersen, M. R., Direct numerical simulations of Rayleigh-Taylor instability, J. Phys.: Conf. Ser., 318, 082007 (2011)
[654] Livescu, S.; Roy, R. V.; Schwartz, L. W., Leveling of thixotropic liquids, J. Non-Newton. Fluid Mech., 166, 395 (2011) · Zbl 1282.76063
[655] Llor, A., Bulk turbulent transport and structure in Rayleigh-Taylor, Richtmyer-Meshkov and variable acceleration instabilities, Laser Part. Beams, 21, 305 (2003)
[656] Llor, A., 2006. Invariants of free turbulent decay. arXiv:physics/0612220; Llor, A., 2006. Invariants of free turbulent decay. arXiv:physics/0612220
[657] Lobatchev, V.; Betti, R., Ablative stabilization of the deceleration phase Rayleigh-Taylor instability, Phys. Rev. Lett., 85, 4522 (2000)
[658] Lombardini, M.; Pullin, D. I., Startup process in the Richtmyer-Meshkov instability, Phys. Fluids, 21, 044104 (2009) · Zbl 1183.76324
[659] Lombardini, M.; Hill, D. J.; Pullin, D. I.; Meiron, D. I., Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations, J. Fluid Mech., 670, 439 (2011) · Zbl 1225.76183
[660] Lombardini, M.; Pullin, D. I.; Meiron, D. I., Transition to turbulence in shock-driven mixing: a Mach number study, J. Fluid Mech., 690, 203 (2012) · Zbl 1241.76250
[661] Lombardini, M.; Pullin, D. I.; Meiron, D. I., Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth, J. Fluid Mech., 748, 85 (2014)
[662] Lombardini, M.; Pullin, D. I.; Meiron, D. I., Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics, J. Fluid Mech., 748, 113 (2014)
[663] Long, C. C.; Krivets, V. V.; Greenough, J. A.; Jacobs, J. W., Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer-Meshkov instability, Phys. Fluids, 21, 114104 (2009) · Zbl 1183.76326
[664] López Cela, J. J.; Piriz, A. R.; Temporal, M.; Tahir, N. A.; Moreno, M. C.S., Elastoplastic effects on the Rayleigh-Taylor instability in an accelerated solid slab, Eur. Phys. J. Appl. Phys., 29, 247 (2005)
[665] López Cela, J. J.; Piriz, A. R.; Moreno, M. C.S.; Tahir, N. A., Numerical simulations of Rayleigh-Taylor instability in elastic solids, Laser Part. Beams, 24, 427 (2006)
[666] López Ortega, A.; Lombardini, M.; Pullin, D. I.; Meiron, D. I., Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws, Phys. Rev. E, 89, 033018 (2014)
[667] Lugomer, S., Micro-fluid dynamics via laser-matter interactions: Vortex filament structures, helical instability, reconnection, merging, and undulation. Phys. Lett. A, 361, 87 (2007)
[668] Lugomer, S., Laser-matter interactions: Inhomogeneous Richtmyer-Meshkov and Rayleigh-Taylor instabilities, Laser Part. Beams, 34, 123 (2016)
[669] Lugomer, S., Laser generated Richtmyer-Meshkov instability and nonlinear wave paradigm in turbulent mixing: I. Central region of Gaussian spot, Laser Part. Beams, 34, 687 (2016)
[670] Lund, H. M.; Dalziel, S. B., Bursting water balloons, J. Fluid Mech., 756, 771 (2014)
[671] Luo, X.; Wang, X.; Si, T., The Richtmyer-Meshkov instability of a three-dimensional air/\(SF_6\) interface with a minimum-surface feature, J. Fluid Mech., 722, R2 (2013) · Zbl 1287.76125
[672] Luo, X.; Guan, B.; Si, T.; Zhai, Z.; Wang, X., Richtmyer-Meshkov instability of a three-dimensional \(SF_6\)-air interface with a minimum-surface feature, Phys. Rev. E, 93, 013101 (2016)
[673] Luo, X.; Guan, B.; Zhai, Z.; Si, T., Principal curvature effects on the early evolution of three-dimensional single-mode Richtmyer-Meshkov instabilities, Phys. Rev. E, 93, 023110 (2016)
[674] Ma, T.; Patel, P. K.; Izumi, N.; Springer, P. T.; Key, M. H.; Atherton, L. J.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Dewald, E. L.; Dixit, S. N.; Doppner, T.; Edgell, D. H.; Epstein, R.; Glenn, S.; Grim, G.; Haan, S. W.; Hammel, B. A.; Hicks, D.; Hsing, W. W.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Le Pape, S.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; Meezan, N. B.; Moody, J. D.; Pak, A.; Parham, T.; Park, H.-S.; Ralph, J. E.; Regan, S. P.; Remington, B. A.; Robey, H. F.; Ross, J. S.; Spears, B. K.; Smalyuk, V.; Suter, L. J.; Tommasini, R.; Town, R. P.; Weber, S. V.; Lindl, J. D.; Edwards, M. J.; Glenzer, S. H.; Moses, E. I., Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions, Phys. Rev. Lett., 111, 085004 (2013)
[675] Ma, T.; Patel, P. K.; Izumi, N.; Springer, P. T.; Key, M. H.; Atherton, L. J.; Barrios, M. A., The role of hot spot mix in the low-foot and high-foot implosions on the NIF, Phys. Plasmas, 24, 056311 (2017)
[676] Ma, X.; Delamere, P. A.; Otto, A., Plasma transport driven by the Rayleigh-Taylor instability, J. Geophys. Res.: Space Phys., 121, 5260 (2016)
[677] MacNeice, P.; Olson, K. M.; Mobarry, C.; De Fainchtein, R.; Packer, C., PARAMESH: A parallel adaptive mesh refinement community toolkit, Comput. Phys. Comm., 126, 330 (2000) · Zbl 0953.65088
[678] Mahalov, A., Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh-Taylor turbulence and nonequilibrium layer dynamics at fine scales, Phys. Scr., 89, 098001 (2014)
[679] Mahalov, A.; Moustaoui, M., Multiscale nested simulations of Rayleigh-Taylor instabilities in ionospheric flows, ASME J. Fluids Eng., 136, 060908 (2014)
[680] Maimouni, I.; Goyon, J.; Lac, E.; Pringuey, T.; Boujlel, J.; Chateau, X.; Coussot, P., Rayleigh-Taylor instability in elastoplastic solids: A local catastrophic process, Phys. Rev. Lett., 116, 154502 (2016)
[681] Malamud, G.; Grosskopf, M. J.; Drake, R. P., Conceptual design of a Rayleigh-Taylor experiment to study bubble merger in two dimensions on NIF, High Energy Density Phys., 11, 17 (2013)
[682] Mandelbrot, B. B., How long is the coast of Britain, Science, 156, 636 (1967)
[683] Marati, N.; Casciola, C. M.; Piva, R., Energy cascade and spatial fluxes in wall turbulence, J. Fluids Mech., 521, 191 (2004) · Zbl 1065.76103
[684] Marble, F.E., Hendricks, G.J., Zukoski, E.E., 1987. Progress toward shock enhancement of supersonic combustion processes, AIAA paper 87-1880.; Marble, F.E., Hendricks, G.J., Zukoski, E.E., 1987. Progress toward shock enhancement of supersonic combustion processes, AIAA paper 87-1880.
[685] Margolin, L. G.; Rider, W. J., A rationale for implicit turbulence modeling, Int. J. Numer. Methods Fluids, 39, 821 (2002) · Zbl 1014.76032
[686] Margolin, L. G.; Rider, W. J., The design and construction of implicit LES models, Internat. J. Numer. Methods Fluids, 47, 1173 (2005) · Zbl 1064.76060
[687] Margolin, L. G.; Smolarkiewicz, P. K.; Wyszogrodzki, A. A., Implicit turbulence modeling for high Reynolds number flows, ASME J. Fluids Eng., 124, 862 (2002)
[688] Mariani, C.; Vandenboomgaerde, M.; Jourdan, G.; Souffland, D.; Houas, L., Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces, Phys. Rev Lett., 100, 254503 (2008)
[689] Marinak, M. M.; Tipton, R. E.; Landen, O. L.; Murphy, T. J.; Amendt, P.; Haan, S. W.; Hatchet, S. P.; Keane, C. J.; Mceahern, R.; Wallace, R., Three-dimensional simulations of Nova high growth factor capsule implosion experiments, Phys. Plasmas, 3, 2070 (1996)
[690] Markstein, G. H., Flow disturbances induced near a slightly wavy contact surface, or flame front traversed by a shock wave, J. Aerosol Sci., 24, 238 (1957) · Zbl 0077.19201
[691] Markstein, G. H., A shock tube study of flame front-pressure wave interactions, (6th intl Symp. Comb (1957), Reinhold: Reinhold New York), 387-398
[692] Marmottant, P.; Villermaux, E., On spray formation, J. Fluid Mech., 498, 73 (2004) · Zbl 1067.76512
[693] Marocchino, A.; Atzeni, S.; Schiavi, A., Numerical study of the ablative Richtmyer-Meshkov instability of laser-irradiated deuterium and deuterium-tritium targets, Phys. Plasmas, 17, 112703 (2010)
[694] Marsh, B. D., Island Arc development: Some observations, experiments and speculations, J. Geol., 87, 687 (1979)
[695] Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y., Energy spectrum in the dissipation range of fluid turbulence, J. Plasma Phys., 57, 195 (1997)
[696] Massa, L.; Jha, P., Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions, Phys. Fluids, 24, 056101 (2012)
[697] Matsumoto, J.; Masada, Y., Two-dimensional numerical study for Rayleigh-Taylor and Richtmyer-Meshkov instabilitites in relativistic jets, Astrophys. J. Lett., 772, 1 (2013)
[698] Matsumoto, Y.; Hoshino, M., Onset of turbulence induced by a Kelvin-Helmholtz vortex, Geophys. Res. Lett., 31, L02807 (2004)
[699] Matsumoto, T., Anomalous scaling of three-dimensional Rayleigh-Taylor turbulence, Phys. Rev. E, 79, 055301(R) (2009)
[700] Matsuoka, C., Vortex sheet motion in incompressible Richtmyer-Meshkov and Rayleigh-Taylor instabilities with surface tension, Phys. Fluids, 21, 092107 (2009) · Zbl 1183.76348
[701] Matsuoka, C.; Nishihara, K., Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability, Phys. Rev. E 73, 026304; Erratum: Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability; Matsuoka, C., Nishihara, K., 2006. Phys. Rev. E, 74, 049902 (2006)
[702] Matsuoka, C.; Nishihara, K.; Fukuda, Y., Nonlinear evolution of an interface in the Richtmyer-Meshkov instability, Phys. Rev. E 67, 036301; Erratum: Nonlinear evolution of an interface in the Richtmyer-Meshkov instability; Matsuoka, C., Nishihara, K., Fukuda, Y., 2003. Phys. Rev. E, 68, 029902 (2003)
[703] Matthaeus, W. H.; Zhou, Y., Extended inertial range phenomenology of magnetohydrodynamic turbulence, Phys. Fluids B, 1, 1929 (1989)
[704] Matzen, M. K., Z pinches as intense x-ray sources for high-energy density physics applications, Phys. Plasmas, 4, 1519 (1997)
[705] Mazariegos, R. A.; Andrews, M. J.; Russell, J. E., Modeling the evolution of salt structure using nonlinear rocksalt flow laws, Tectonophysics, 256, 129 (1996)
[706] McCray, R., Supernova 1987A revisited, Annu. Rev. Astron. Astrophys., 31, 175 (1998)
[707] McCrory, R. L., Recent progress in inertial confinement fusion in the United States, Nucl. Fusion, 44, S123 (2004)
[708] McQueen, R. G.; Marsh, S. P.; Taylor, J. W.; Fritz, J. N.; Carter, W. J., The equation of state of solids from shock wave studies, (Kinslow, R., High Velocity Impact Phenomena (1970), Academic Press: Academic Press New York), 293
[709] McWilliams, J. C., The emergence of isolated coherent vortices in turbulent flow, J. Fluid Mech., 146, 21 (1984) · Zbl 0561.76059
[710] Meinecke, J.; Tzeferacos, P.; Bell, A.; Bingham, R.; Clarke, R.; Churazov, E.; Crowston, R., Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas, Proc. Natl. Acad. Sci., 112, 8211 (2015)
[711] Menikoff, R.; Plohr, B. J., The Riemann problem for fluid flow of real materials, Rev. Modern Phys., 61, 75 (1989) · Zbl 1129.35439
[712] Menikoff, R.; Zemach, C., Rayleigh-Taylor instability and the use of conformal maps for ideal fluids flow, J. Comput. Phys., 51, 28 (1983) · Zbl 0563.76024
[713] Menikoff, R.; Mjolsness, R. C.; Sharp, D. H.; Zemach, C., Unstable normal mode for Rayleigh-Taylor instability in viscous fluids, Phys. Fluids, 20, 2000 (1977) · Zbl 0379.76041
[714] Menikoff, R.; Mjolsness, R. C.; Sharp, D. H.; Zemach, C., Initial value problem for Rayleigh-Taylor instability of viscous fluids, Phys. Fluids, 21, 1674 (1978) · Zbl 0431.76047
[715] Menon, S.; Lal, M., On the dynamics and instability of bubbles formed during underwater explosions, Exp. Thermal Fluid Sci., 16, 305 (1998)
[716] Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L., Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA, Phys. Plasmas, 22, 062306 (2015)
[717] Meshkov, E. E., Instability of the interface of two gases accelerated by a shock wave, Sov. Fluid Dyn., 4, 101 (1969)
[718] Meshkov, E. E., Instability of a shock wave accelerated interface between two gases, NASA Tech. Trans., F-13, 074 (1970)
[719] Meshkov, E. E., Instability of shock-accelerated interface between two media, (Dannevik, W.; Buckingham, A.; Leith, C., Advances in Compressible Turbulent Mixing (1992)), 473
[720] Meshkov, E. E., One approach to the experimental study of hydrodynamic instabilities: creation of a gas-gas interface using the dynamic technique, (Young, R.; Glimm, J.; Boston, B., Proc. 5th international Workshop on the Physics of Compressible Turbulent Mixing (1995), Stony Brook: Stony Brook NY, USA), 237
[721] Meshkov, E. E., Some peculiar features of hydrodynamic instability development, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371, 20120288 (2013)
[722] Meyer, K. A.; Blewett, P. J., Numerical investigation of the stability of a shock accelerated interface between two fluids, Phys. Fluids, 15, 753 (1972)
[723] Mikaelian, K. O., Approximate treatment of density gradients in Rayleigh-Taylor instabilities, Phys. Rev. A, 33, 1216 (1986)
[724] Mikaelian, K. O., Turbulent mixing generated by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Physica D, 36, 343 (1989) · Zbl 0692.76052
[725] Mikaelian, K. O., Rayleigh-Taylor and Richtmyer-Meshkov instabilities in multilayer fluids with surface tension, Phys. Rev. A, 42, 7211 (1990)
[726] Mikaelian, K. O., Density gradient stabilization of the Richtmyer-Meshkov instability, Phys. Fluids A, 3, 2638 (1991) · Zbl 0825.76205
[727] Mikaelian, K. O., Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Rev. E, 47, 375 (1993)
[728] Mikaelian, K. O., Freeze-out and the effect of compressibility in the Richtmyer-Meshkov instability, Phys. Fluids, 6, 356 (1994) · Zbl 0825.76252
[729] Mikaelian, K. O., Oblique shocks and the combined Rayleigh-Taylor, Kelvin-Helmholtz, and Richtmyer-Meshkov instabilities, Phys. Fluids, 6, 1943 (1994) · Zbl 0828.76044
[730] Mikaelian, K. O., Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension, Phys. Rev. E, 54, 3676 (1996)
[731] Mikaelian, K. O., Connection between the Rayleigh and the Schroedinger equations, Phys. Rev. E, 53, 3551 (1996)
[732] Mikaelian, K. O., Analytical approach to non-linear RT and RM instability, Phys. Rev. Lett., 80, 508 (1998)
[733] Mikaelian, K. O., Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers, Phys. Rev. E, 67, 026319 (2003)
[734] Mikaelian, K. O., Richtmyer-Meshkov instability of arbitrary shapes, Phys. Fluids, 17, 034101 (2005) · Zbl 1187.76352
[735] Mikaelian, K. O., Limitations and failures of the Layzer model for hydrodynamic instabilities, Phys. Rev. E, 78, 015303 (2008)
[736] Mikaelian, K. O., Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities, Phys. Fluids, 21, 024103 (2009) · Zbl 1183.76354
[737] Mikaelian, K. O., Nonlinear hydrodynamic interface instabilities driven by time-dependent accelerations, Phys. Rev. E, 79, 065303 (2009)
[738] Mikaelian, K. O., Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations, Phys. Rev. E, 81, 016325 (2010)
[739] Mikaelian, K. O., Shock-induced interface instability in viscous fluids and metals, Phys. Rev. E, 87, 031003 (2013)
[740] Mikaelian, K. O., Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings, Phys. Rev. E, 89, 053009 (2014)
[741] Mikaelian, K. O., Boussinesq approximation for Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Fluids, 26, 054103 (2014)
[742] Mikaelian, K. O., Comment on “The effect of viscosity, surface tension and non-linearity on Richtmyer-Meshkov instability”, Eur. J. Mech. B Fluids, 21, 511-526 (2014) · Zbl 1297.76069
[743] Mikaelian, K. O., Testing an analytic model for Richtmyer-Meshkov turbulent mixing widths, Shock Waves, 25, 35 (2015)
[744] Mikaelian, K. O., Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability, Phys. Rev. Fluids, 1, 033601 (2016)
[745] Miller, G. H.; Moses, E. I.; Wuest, C. R., The National Ignition Facility, Opt. Eng., 43, 2841 (2004)
[746] Miller, G. H.; Moses, E. I.; Wuest, C. R., The National Ignition Facility: enabling fusion ignition for the 21st century, Nucl. Fusion, 44, S228 (2004)
[747] Miller, P. L.; Dimotakis, P. E., Reynolds number dependence of scalar fluctuations in a high Schmidt number turbulent jet, Phys. Fluids A, 1156 (1991)
[748] Mima, K., Present status and future prospects of IFE and high power laser research in Asia, Nucl. Fusion, 44, S129 (2004)
[749] Misra, A.; Pullin, D. I., A vortex-based model for large-eddy simulation, Phys. Fluids, 9, 2443 (1997) · Zbl 1185.76770
[750] Mitchell, I. H.; Bayley, J. M.; Chittenden, J. P.; Worley, J. F.; Dangor, A. E.; Haines, M. G.; Choi, P., A high impedance mega-ampere generator for fiber Z-pinch experiments, Rev. Sci. Instrum., 67, 1533 (1996)
[751] Modestov, M.; Bychkov, V.; Marklund, M., The Rayleigh-Taylor instability in quantum magnetized plasma with para- and ferromagnetic properties, Phys. Plasmas, 16, 032106 (2009)
[752] Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J., Relativistic effects on the Richtmyer-Meshkov instability, Phys. Rev. D, 90, 125028 (2014)
[753] Moin, P.; Mahesh, K., Direct numerical simulation: A tool in turbulence research, Annu. Rev. Fluid Mech., 30, 539 (1998) · Zbl 1398.76073
[754] Momeni, M., Linear study of Rayleigh-Taylor instability in a diffusive quantum plasma, Phys. Plasmas, 20, 082108 (2013)
[755] Monfared, S. K.; Buttler, W. T.; Frayer, D. K.; Grover, M.; LaLone, B. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Schauer, M. M., Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments, J. Appl. Phys., 117, 223105 (2015)
[756] Monin, A. S.; Yaglom, A. M., Statistical Fluid Mechanics (1975), MIT Press: MIT Press Cambridge, MA
[757] Mons, V.; Cambon, C.; Sagaut, P., A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors, J. Fluid Mech., 788, 147 (2016) · Zbl 1338.76033
[758] Moretto, L. G.; Tso, K.; Colonna, N.; Wozniak, G. J., New Rayleigh-Taylor-like surface instability and nuclear multifragmentation, Phys. Rev. Lett., 69, 1884 (1992)
[759] Morgan, R. V.; Aure, R.; Stockero, J. D.; Greenough, J. A.; Cabot, W.; Likhachev, O. A.; Jacobs, J. W., On the late-time growth of the two- dimensional Richtmyer-Meshkov instability in shock tube experiments, J. Fluid Mech., 712, 354 (2012) · Zbl 1275.76104
[760] Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W., Rarefaction-driven Rayleigh-Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory, J. Fluid Mech., 791, 34 (2016) · Zbl 1383.76400
[761] Moses, E. I.; Wuest, C. R., The National Ignition Facility: Status and plans for laser fusion and high-energy-density experimental studies, Fusion Sci. Technol., 43, 420 (2003)
[762] Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R., The National Ignition Facility: ushering in a new age for high energy density science, Phys. Plasmas, 16, 041006 (2009)
[763] Motl, B.; Oakley, J.; Ranjan, D.; Weber, C.; Anderson, M.; Bonazza, R., Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges, Phys. Fluids, 21, 126102 (2009) · Zbl 1183.76364
[764] Movahed, P.; Johnsen, E., A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability, J. Comput. Phys., 239, 166 (2013)
[765] Mueschke, N. J.; Schilling, O., Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulations with experimentally measured initial conditions. I. Comparison to experimental data, Phys. Fluids, 21, 014106 (2009) · Zbl 1183.76366
[766] Mueschke, N. J.; Schilling, O., Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. II. Dynamics of transitional flow and mixing statistics, Phys. Fluids, 21, 014107 (2009) · Zbl 1183.76367
[767] Müller, B.; Janka, H.-Th, Non-radial instabilities and progenitor asphericities in core-collapse supernovae, Mon. Not. R. Astron. Soc., 448, 2141 (2015)
[768] Müller, B.; Melson, T.; Heger, A.; Janka, H.-Th., Supernova simulations from a 3D progenitor model -Impact of perturbations and evolution of explosion properties, Mon. Not. R. Astron. Soc., 472, 491 (2017)
[769] Müller, E.; Fryxell, B.; Arnett, D., Instability and clumping in SN 1987A, Astron. Astrophys., 251, 505 (1991)
[770] Mullin, T., Experimental studies of transition to turbulence in a pipe, Annu. Rev. Fluid Mech., 43, 1 (2011) · Zbl 1210.76005
[771] Munro, D. H., Analytical solution for Rayleigh-Taylor growth rate in smooth density gradients, Phys. Rev. A, 38, 1433 (1988)
[772] Murakami, M.; Iida, S., Scaling laws for hydrodynamically similar implosions with heat conduction, Phys. Plasmas, 9, 2745 (2002)
[773] Murdin, P.; Murdin, L., Supernovae (1985), Cambridge University Press: Cambridge University Press Cambridge, UK
[774] Nagel, S. R.; Haan, S. W.; Rygg, J. R.; Barrios, M.; Benedetti, L. R.; Bradley, D. K.; Field, J. E.; Hammel, B. A.; Izumi, N.; Jones, O. S.; Khan, S. F.; Ma, T.; Pak, A. E.; Tommasini, R.; Town, R. P.J., Effect of the mounting membrane on shape in inertial confinement fusion implosions, Phys. Plasmas, 22, 022704 (2015)
[775] Nakai, S.; Takabe, H., Principles of inertial confinement fusion-physics of implosion and the concept of inertial fusion energy, Rep. Progr. Phys., 59, 1071 (1996)
[776] Nayfeh, A. H., On the nonlinear Lamb-Taylor instability, J. Fluid Mech., 38, 619 (1969) · Zbl 0193.27001
[777] Nayfeh, A. H., Perturbation Methods (1973), Wiley: Wiley New York · Zbl 0265.35002
[778] Nelkin, M., Universality and scaling in fully developed turbulence, Adv. Phys., 43, 143 (1994)
[779] Neuvazhaev, V. E.; Yakovlev, V. G., Turbulent mixing of an interface in a numerical gasdynamic calculation, Zh. Vychisl. Mat. Fiz., 16, 154 (1976) · Zbl 0357.76039
[780] Neuvazhaev, V. E.; Yakovlev, V. G., Theory of turbulent mixing at the interface of fluids in a gravity field, J. Appl. Mech. Tech. Phys., 17, 513 (1976)
[781] Ngan, K.; Straub, D. N.; Bartello, P., Aspect ratio effects in quasi-two-dimensional turbulence, Phys. Fluids, 17, 125102 (2005) · Zbl 1188.76110
[782] Niederhaus, C. E.; Jacobs, J. W., Experimental study of the Richtmyer-Meshkov instability of incompressible fluids, J. Fluid Mech., 485, 243 (2003) · Zbl 1110.76004
[783] Niederhaus, J. H.J.; Greenough, J. A.; Oakley, J. G.; Bonazza, R., Vorticity evolution in two- and three-dimensional simulations for shock-bubble interactions, Phys. Scr. T., 132, 014019 (2008)
[784] Niederhaus, J. H.J.; Greenough, J. A.; Oakley, J. G.; Ranjan, D.; Anderson, M.; Bonazza, R., A computational parameter study for the three-dimensional shock-bubble interaction, J. Fluid Mech., 594, 85 (2008) · Zbl 1159.76344
[785] Nishihara, K.; Ikegawa, T., Weakly nonlinear theory of Rayleigh-Taylor instability, J. Plasma Fusion Res. Series, 2, 536 (1999)
[786] Nishihara, K.; Wouchuk, J. G.; Matsuoka, C.; Ishizaki, R.; Zhakhovsky, V. V., Richtmyer-Meshkov instability: theory of linear and nonlinear evolution, Phil. Trans. R. Soc. A, 368, 1769 (2010) · Zbl 1192.76018
[787] Nittmann, J.; Falle, S. A.E. G.; Gaskell, P. H., The dynamical destruction of shocked gas clouds, Mon. Not. R. Astron. Soc., 201, 833 (1982) · Zbl 0541.76056
[788] Nobile, A.; Nikroo, A.; Cook, R. C.; Cooley, J. C.; Alexander, D. J.; Hackenberg, R. E.; Necker, C. T.; Dickerson, R. M.; Kilkenny, J. L.; Bernat, T. P.; Chen, K. C.; Xu, H.; Stephens, R. B.; Huang, H.; Haan, S. W.; Forsman, A. C.; Atherton, L. J.; Letts, S. A.; Bono, M. J.; Wilson, D. C., Status of the development of ignition capsules in the U.S. effort to achieve thermonuclear ignition on the National Ignition Facility, Laser Part. Beams, 24, 567 (2006)
[789] Novak, G. S.; Ostriker, J. P.; Ciotti, L., Feedback from central black holes in elliptical galaxies: two-dimensional models compared to one-dimensional models, Astrophys. J., 737, 26 (2011)
[790] Nuckolls, J.; Wood, L.; Thiessen, A.; Zimmerman, G., Laser compression of matter to super-high density: Thermonuclear (CTR) applications, Nature, 239, 139 (1972)
[791] Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N., The Nike KrF laser facility: Performance and initial target experiments, Phys. Plasmas, 3, 2098 (1996)
[792] Oertel, M.; Hempel, M.; Klähn, T.; Typel, S., Equations of state for supernovae and compact stars, Rev. Modern Phys., 89, 015007 (2017)
[793] Ofer, O.; Alon, U.; Shvarts, D.; McCrory, R. L.; Verdon, C. P., Modal model for the nonlinear multimode Rayleigh-Taylor instability, Phys. Plasmas, 3, 3073 (1996)
[794] Oggian, T.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., Computing multi-mode shock-induced compressible turbulent mixing at late times, J. Fluid Mech., 779, 411 (2015) · Zbl 1360.76115
[795] Ohkitani, K.; Kida, S., Triad interactions in a forced turbulence, Phys. Fluids A, 4, 794 (1992) · Zbl 0748.76064
[796] Olson, B. J.; Greenough, J. A., Large eddy simulation requirements for the Richtmyer-Meshkov Instability, Phys. Fluids, 26, 044103 (2014)
[797] Olson, D. H.; Jacobs, J. W., Experimental study of Rayleigh-Taylor instability with complex initial perturbation, Phys. Fluids, 21, 034103 (2009) · Zbl 1183.76392
[798] Olver, P. J., Applications of Lie Groups to Differential Equations (1993), Springer: Springer Berlin · Zbl 0785.58003
[799] Oparin, A. M.; Inogamov, N. A.; Dem’yanov, A. Yu., On the spectral and statistical properties of Rayleigh-Taylor mixing, JETP Lett., 72, 490 (2000)
[800] Oron, D.; Arazi, L.; Kartoon, D.; Rikanati, A.; Alon, A.; Shvarts, D., Dimensionality dependence of Rayleigh-Taylor and Richtmyer-Meshkov instability late time scaling laws, Phys. Plasmas, 8, 2883 (2001)
[801] Orszag, S. A., Analytical theories of turbulence, J. Fluid Mech., 41, 363 (1970) · Zbl 0191.25601
[802] Orszag, S. A., (Balian, R.; Peube, J. L., Fluid Dynamics: Les Houches 1973 (1977), Gordon & Breach: Gordon & Breach NY)
[803] Ott, E., Nonlinear evolution of the Rayleigh-Taylor instability of a thin layer, Phys. Rev Lett., 20, 1429 (1972)
[804] Pacitto, G.; Flament, C.; Bacri, J.-C.; Widom, M., Rayleigh-Taylor instability with magnetic fluids: Experiment and theory, Phys. Rev. E, 62, 7941 (2000)
[805] Palmer, C. A.J.; Schreiber, J.; Nagel, S. R.; Dover, N. P.; Bellei, C.; Beg, F. N.; Bott, S., Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser, Phys. Rev. Lett., 108, 225002 (2012)
[806] Pandian, A.; Swisher, N. C.; Abarzhi, S. I., Deterministic and stochastic dynamics of Rayleigh-Taylor mixing with a power-law time-dependent acceleration, Phys. Scr., 92, 014002 (2017)
[807] Park, H.-S.; Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; Ma, T.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Kline, J. L., High-adiabat, high-foot Inertial confinement fusion implosion experiments on the National Ignition Facility, Phys. Rev Lett., 112, 055001 (2014)
[808] Peltier, W. R.; Caulfield, C. R., Mixing efficiency in stratified shear flows, Annu. Rev. Fluid Mech., 35, 135 (2003) · Zbl 1041.76024
[809] Peng, G.; Zabusky, N. J.; Zhang, S., Vortex-accelerated secondary baroclinic vorticity deposition and late-intermediate time dynamics of a two-dimensional Richtmyer-Meshkov interface, Phys. Fluids, 15, 3730 (2003) · Zbl 1186.76421
[810] Penney, W. G.; Price, A. T., On the changing form of a nearly spherical submarine bubble, (Hartmann, G. K.; Hill, E. G., British Report SW-27 (1942). British Report SW-27 (1942), Underwater Explosion Research, Vol. II (1942), Office of Naval Research: Office of Naval Research Washington, D.C.), 145
[811] Perlmutter, S.; Gabi, S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G., Measurements of the cosmological parameters omega and lambda from the first seven supernovae at Z \(\geq 0.35\), Astrophys. J., 483, 565 (1997)
[812] Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.; Nugent, P.; Castro, P.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.; Hook, I.; Kim, A.; Kim, M.; Lee, J.; Nunes, N.; Pain, R.; Pennypacker, C.; Quimby, R.; Lidman, C.; Ellis, R.; Irwin, M.; Mcmahon, R.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.; Filippenko, A.; Matheson, T.; Fruchter, A.; Panagia, N.; Newberg, H.; Couch, W., (Supernova Cosmology Project), Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae, Astrophys. J., 517, 565 (1999) · Zbl 1368.85002
[813] Petchenko, A.; Bychkov, V.; V’yacheslav, A.; Eriksson, L.-E., Violent folding of a flame front in a flame-acoustic resonance, Phys. Rev. Lett., 97, 164501 (2006)
[814] Peterson, D. L.; Bowers, R. L.; Brownell, J. H.; Greene, A. E.; Mclenithan, K. D.; Oliphant, T. A.; Roderick, N. F.; Scannapieco, A. J., Two-dimensional modeling of magnetically driven Rayleigh-Taylor instabilities in cylindrical Z pinches, Phys. Plasmas, 3, 368 (1996)
[815] Petrasso, R. D., Rayleigh’s challenge endures, Nature, 367, 217 (1994)
[816] Pham, T.; Meiron, D. I., A numerical study of Richtmyer-Meshkov instability in continuously stratified fluids, Phys. Fluids A, 5, 344 (1993)
[817] Picone, J. M.; Boris, J. P., Vorticity generation by shock propagation through bubbles in air, (NRL Memorandum Rep. 5884 (1986), Naval Research Laboratory: Naval Research Laboratory Washington, D.C)
[818] Picone, J. M.; Boris, J. P.; Greig, J. R.; Raleigh, M.; Fernsler, R. F., Convective cooling of lightning channels, J. Atmos. Sci., 38, 2056 (1981)
[819] Picone, J. M.; Oran, E. S.; Boris, J. P.; Young, T. R., Dynamics of Shock Waves Explosions and Detonations, 429 (1985), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics New York
[820] Picone, J. M.; Boris, J. P.; Oran, E. S.; Ahearne, R., Rotational motion generated by shock propagation through a nonuniform gas, (Bershader, D.; Hanson, R., Proc. 15th Intl Symp. on Shock Waves and Shock Tubes (1986), Stanford University Press Stanford, Calif.), 523-529
[821] Piriz, A. R.; López Cela, J. J.; Cortazar, O. D.; Tahir, N. A.; Hoffmann, D. H.H., Rayleigh-Taylor instability in elastic solids, Phys. Rev. E, 72, 056313 (2005)
[822] Piriz, A. R.; López Cela, J. J.; Tahir, N. A.; Hoffmann, D. H.H., Richtmyer-Meshkov flow in elastic solids, Phys. Rev. E, 74, 037301 (2006)
[823] Piriz, A. R.; López Cela, J. J.; Serna Moreno, M. C.; Cortázar, O. D.; Tahir, N. A.; Hoffmann, D. H.H., A new approach to Rayleigh-Taylor instability: Application to accelerated elastic solids, Nucl. Instrum. Methods Phys. Res. A, 577, 250 (2007)
[824] Piriz, A. R.; López Cela, J. J.; Tahir, N. A.; Hoffmann, D. H.H., Richtmyer-Meshkov instability in elastic-plastic media, Phys. Rev. E, 78, 056401 (2008)
[825] Piriz, A. R.; Lopez Cela, J. J.; Tahir, N. A., Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions, Nucl. Instrum. Methods Phys. Res. A, 606, 139 (2009)
[826] Piriz, A. R.; Sun, Y. B.; Tahir, N. A., Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration, Phys. Rev. E, 91, 033007 (2015)
[827] Piriz, A. R.; Sun, Y. B.; Tahir, N. A., Analytic model for the dynamic Z-pinch, Phys. Plasmas, 22, 062704 (2015)
[828] Plag, H.-P.; Jüttner, H.-U., Rayleigh-Taylor instabilities of a self-gravitating Earth, J. Geodyn., 20, 267 (1995)
[829] Plesset, M. S.; Whipple, C. G., Viscous effects in Rayleigh-Taylor instability, Phys. Fluids, 17, 1 (1974) · Zbl 0282.76037
[830] Plewa, T., Detonating failed deflagration model of thermonuclear supernovae. I. Explosion dynamics, Astrophys. J., 657, 942 (2007)
[831] Plohr, J. N.; Plohr, B. J., Linearized analysis of Richtmyer-Meshkov flow for elastic materials, J. Fluid Mech., 537, 55 (2005) · Zbl 1074.74037
[832] Podladchikov, Yu. Yu.; Talbot, C.; Poliakov, A. N.B., Numerical models of complex diapirs, Tectonophysics, 228, 349 (1993)
[833] Pons, J.; Oudin, C.; Valero, J., Kinematics of large syn-orogenic intrusions: example of the lower proterozoic saraya batholith (eastern Senegal), Geol. Rund., 81, 473 (1992)
[834] Pope, S. B., Ten questions concerning the large Eddy simulation of turbulent flows, New J. Phys., 6, 35 (2004)
[835] Popil, R.; Curzon, F. L., Production of reproducible Rayleigh-Taylor instabilities, Rev. Sci. Instrum., 50, 1291 (1979)
[836] Popil, R.; Curzon, F. L., Climbing water films in experiments on Rayleigh-Taylor instabilities, Phys. Fluids, 23, 1718 (1980)
[837] Poujade, O., Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime, Phys. Rev. Lett., 97, 185002 (2006)
[838] Poujade, O.; Peybernes, M., Growth rate of Rayleigh-Taylor turbulent mixing layers from first principles, Phys. Rev. E, 81, 016316 (2010)
[839] Pouquet, A.; Frisch, U.; Leorat, J., Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech., 77, 321 (1976) · Zbl 0336.76019
[840] Pozzi, A., Applications of Padé Approximation Theory in Fluid Dynamics (1994), World Scientific: World Scientific Singapore · Zbl 0922.76008
[841] Prasad, J. K.; Rasheed, A.; Kumar, S.; Sturtevant, B., The late-time development of the Richtmyer-Meshkov instability, Phys. Fluids, 12, 2108 (2000) · Zbl 1184.76434
[842] Prestridge, K.; Vorobieff, P.; Rightley, P. M.; Benjamin, R. F., Validation of an instability growth model using particle image velocimetry measurements, Phys. Rev. Lett., 84, 4353 (2000)
[843] Prestridge, K.; Rightley, P. M.; Vorobieff, P.; Benjamin, R. F.; Kurnit, N. A., Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain, Exp. Fluids, 29, 339 (2000)
[844] Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C., Using growth and arrest of Richtmyer-Meshkov instabilities and Lagrangian simulations to study high-rate material strength, J. Phys.: Conf. Ser., 500, 112051 (2014)
[845] Prime, M. B.; Buttler, W. T.; Buechler, M. A.; Denissen, N. A.; Kenamond, M. A.; Mariam, F. G.; Martinez, J. I.; Oró, D. M.; Schmidt, D. W.; Stone, J. B.; Tupa, D.; Vogan-McNeil, W., Estimation of metal strength at very high rates using free-surface Richtmyer-Meshkov instabilities, J. Dyn. Behav. Mater., 3, 189 (2017)
[846] Probyn, M. G.; Thornber, B.; Drikakis, D.; Youngs, D.; Williams, R., An investigation into non-linear growth rate of 2D and 3D single-mode Richtmyer-Meshkov instability, ASME J. Fluids Eng., 136, 091208 (2014)
[847] Pullin, D. I., A vortex-based model for the subgrid flux of a passive scalar, Phys. Fluids, 12, 2311 (2000) · Zbl 1184.76439
[848] Puranik, P. B.; Oakley, J. G.; Anderson, M. H.; Bonazza, R., Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave, Shock Waves, 13, 413 (2004)
[849] Qiu, X.; Liu, Y.-L.; Zhou, Q., Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence, Phys. Rev. E, 90, 043012 (2014)
[850] Qiu, Z.; Wu, Z.; Cao, J.; Li, D., Effects of transverse magnetic field and viscosity on the Richtmyer-Meshkov instability, Phys. Plasmas, 15, 042305 (2008)
[851] Radha, P. B.; Delettrez, J.; Epstein, R.; Glebov, V. Yu.; Keck, R.; McCrory, R. L.; McKenty, P.; Meyerhofer, D. D.; Marshall, F.; Regan, S. P.; Roberts, S.; Sangster, T. C.; Seka, W.; Skupsky, S.; Smalyuk, V.; Sorce, C.; Stoeckl, C.; Soures, J.; Town, R. P.J.; Yaakobi, B., Inference of mix in direct-drive implosions on OMEGA, Phys. Plasmas, 9, 2208 (2002)
[852] Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hoover, D. E.; Hurricane, O. A.; Kroll, J. J.; Nikroo, A.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Peterson, K. J.; Salmonson, J., An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility, Phys. Plasmas, 21, 072710 (2014)
[853] Ramaprabhu, P.; Andrews, M. J., Experimental investigation of Rayleigh-Taylor mixing at small Atwood number, J. Fluid Mech., 502, 233 (2004) · Zbl 1067.76518
[854] Ramaprabhu, P.; Dimonte, G., Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio, Phys. Rev. E, 71, 036314 (2005)
[855] Ramaprabhu, P.; Dimonte, G.; Andrews, M. J., A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability, J. Fluid Mech., 536, 285 (2005) · Zbl 1122.76035
[856] Ramaprabhu, P.; Dimonte, G.; Young, Y.-Y.; Calder, A. C.; Fryxwell, B., Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem, Phys. Rev. E, 74, 066308 (2006)
[857] Ramaprabhu, P.; Dimonte, G.; Woodward, P.; Fryer, C.; Rockefeller, G.; Muthuraman, K.; Lin, P.-H.; Jayaraj, J., The late-time dynamics of the single-mode Rayleigh-Taylor instability, Phys. Fluids, 24, 074107 (2012)
[858] Ramaprabhu, P.; Karkhanis, V.; Lawrie, A. G.W., The Rayleigh-Taylor instability driven by an accel-decel-accel profile, Phys. Fluids, 25, 115104 (2013)
[859] Ramaprabhu, P.; Karkhanis, V.; Banerjee, R.; Varshochi, H.; Khan, M.; Lawrie, A. G.W., Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations, Phys. Rev. E, 93, 013118 (2016)
[860] Ramshaw, J. D., Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration, Phys. Rev. E, 58, 5834 (1998)
[861] Ranjan, D.; Anderson, M.; Oakley, J.; Bonazza, R., Experimental investigation of a strongly shocked gas bubble, Phys. Rev. Lett., 94, 184507 (2005)
[862] Ranjan, D.; Niederhaus, J.; Motl, B.; Anderson, M.; Oakley, J.; Bonazza, R., Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction, Phys. Rev. Lett., 98, 024502 (2007)
[863] Ranjan, D.; Niederhaus, J. H.J.; Oakley, J. G.; Anderson, M. H.; Bonazza, R.; Greenough, J. A., Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations, Phys. Fluids, 20, 036101 (2008) · Zbl 1182.76621
[864] Ranjan, D.; Niederhaus, J. H.J.; Oakley, J. G.; Anderson, M. H.; Greenough, J. A.; Bonazza, R., Experimental and numerical investigation of shock-induced distortion of a spherical gas inhomogeneity, Phys. Scr. T, 132, 014020 (2008)
[865] Ranjan, D.; Oakley, J.; Bonazza, R., Shock-bubble interactions, Annu. Rev. Fluid Mech., 43, 117 (2011) · Zbl 1299.76125
[866] Rao, P.; Caulfield, C. P.; Gibbon, J. D., Nonlinear effects in buoyancy-driven variable density turbulence, J. Fluid Mech., 810, 362 (2017) · Zbl 1383.76211
[867] Rasthofer, U.; Burton, G. C.; Wall, W. A.; Gravemeier, V., Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of passive-scalar mixing in turbulent flow at low and high Schmidt numbers, Phys. Fluids, 26, 055108 (2014)
[868] Rasthofer, U.; Burton, G. C.; Wall, W. A.; Gravemeier, V., An algebraic variational multiscale-multigrid-multifractal method for large-eddy simulation of turbulent variable-density flow at low Mach number, Internat. J. Numer. Methods Fluids, 76, 416 (2014)
[869] Ratafia, M., Experimental investigation of Rayleigh-Taylor instability, Phys. Fluids, 16, 1207 (1973)
[870] Rayleigh, Lord, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc., 14, 170-177 (1883) · JFM 15.0848.02
[871] Rayleigh, Lord, Scientific Papers Vol. II, 200 (1900), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, England
[872] Read, K. I., Experimental investigation of turbulent mixing by Rayleigh-Taylor instability, Physica D, 12, 45 (1984)
[873] Read, K. I.; Youngs, D. L., Experimental investigation of turbulent mixing by Rayleigh-Taylor instability. Atomic Weapons Research Establishment Report 011/83 (1983)
[874] Regan, S. P.; Epstein, R.; Hammel, B. A.; Suter, L. J.; Ralph, J.; Scott, H.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Farley, D. R.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Haan, S. W.; Hamza, A.; Hicks, D. G.; Izumi, N.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma., T.; MacFarlane, J. J.; Mancini, R. C.; McCrory, R. L.; Meezan, N. B.; Meyerhofer, D. D.; Nikroo, A.; Peterson, K. J.; Sangster, T. C.; Springer, P.; Town, R. P.J., Hot-spot mix in ignition-scale implosions on the NIF, Phys. Plasmas, 19, 056307 (2012)
[875] Reid, W. H., The effect of surface tension and viscosity on the stability of two superposed fluids, Proc. Camb. Philos. Soc., 57, 415 (1961) · Zbl 0101.42903
[876] Reinaud, J.; Joly, L.; Chassaing, P., The baroclinic secondary instability of the two-dimensional shear layer, Phys. Fluids, 12, 2489 (2000) · Zbl 1184.76450
[877] Reinecke, M.; Hillebrandt, W.; Niemeyer, J. C., Three-dimensional simulations of type Ia supernovae, Astron. Astrophys., 391, 1167 (2002)
[878] Remington, B. A.; Weber, S. V.; Marinak, M. M.; Haan, S. W.; Kilkenny, J. D.; Wallace, R. J.; Dimonte, G., Single-mode and multimode Rayleigh-Taylor experiments on Nova, Phys. Plasmas, 2, 241 (1995)
[879] Remington, B. A.; Kane, J.; Drake, R. P.; Glendinning, S. G.; Estabrook, K.; London, R.; Castor, J.; Wallace, R. J.; Arnett, D.; Liang, E.; McCray, R.; Rubenchik, A.; Fryxell, B., Supernova hydrodynamics experiments on the Nova laser, Phys. Plasmas, 4, 1994 (1997)
[880] Remington, B. A.; Arnett, D.; Drake, R. P.; Takabe, H., Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 284, 1488 (1999)
[881] Remington, B. A.; Drake, R. P.; Ryutov, D. D., A review of astrophysics experiments on intense lasers, Phys. Plasmas, 7, 1641 (2000)
[882] Remington, B. A.; Drake, R. P.; Ryutov, D. D., Experimental astrophysics with high power lasers and Z pinches, Rev. Mod. Phys., 78, 755 (2006)
[883] Remington, B. A.; Rudd, R. E.; Wark, J. S., From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation, Phys. Plasmas, 22, 090501 (2015)
[884] Ren, G.; Chen, Y.; Tang, T.; Li, Q., Ejecta production from shocked Pb surface via molecular dynamics, J. Appl. Phys., 116, 133507 (2014)
[885] Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T., Neutron generation by laser-driven spherically convergent plasma fusion, Phys. Rev. Lett., 118, 165001 (2017)
[886] Renoult, M.-C.; Petschek, R. G.; Rosenblatt, C.; Carlès, P., Deforming static fluid interfaces with magnetic fields: application to the Rayleigh-Taylor instability, Exp. Fluids, 51, 1073 (2011)
[887] Renoult, M.-C.; Carles, P.; Ferjani, S.; Rosenblatt, C., 2D Rayleigh-Taylor instability: interfacial arc-length vs deformation amplitude, Europhys. Lett., 101, 54001 (2013)
[888] Renoult, M.-C.; Rosenblatt, C.; Carles, P., Nodal analysis of nonlinear behavior of the instability at a fluid interface, Phys. Rev. Lett., 114, 114503 (2015)
[889] Reynolds, S. P., Supernova remnants at high energy, Annu. Rev. Astron. Astrophys., 46, 89 (2008)
[890] Riccobelli, D.; Ciarletta, P., Rayleigh-Taylor instability in soft elastic layers, Phil. Trans. R. Soc. A, A375, 20160421 (2017) · Zbl 1404.74019
[891] Richtmyer, R. D., Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math., 13, 297 (1960)
[892] Riess, A. G.; Filippenko, A. V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P. M.; Gilliland, R. L.; Hogan, C.; Jha, S.; Kirshner, R.; Leibundgut, B.; Phillips, M.; Reiss, D.; Schmidt, B.; Schommer, R.; Smith, R.; Spyromilio, J.; Stubbs, C.; Suntzeff, N.; Tonry, J. (High-Z Supernova Search), Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009 (1998)
[893] Rightley, P. M.; Vorobieff, R.; Martin, R.; Benjamin, R. F., Experimental observations of the mixing transition in a shock-accelerated gas curtain, Phys. Fluids, 11, 186 (1999) · Zbl 1147.76481
[894] Rikanati, A.; Alon, U.; Shvarts, D., Vortex model for the nonlinear evolution of the multimode Richtmyer-Meshkov instability at low Atwood numbers, Phys. Rev. E, 58, 7410 (1998)
[895] Rikanati, A.; Oron, D.; Alon, U.; Shvarts, D., Statistical mechanics merger model for hydrodynamic instabilities, Astrophys. J. Suppl. Ser., 127, 451 (2000)
[896] Rikanati, A.; Oron, D.; Sadot, O.; Shvarts, D., High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability, Phys. Rev. E, 67, 026307 (2003)
[897] Ristorcelli, J. R.; Clark, T. T., Rayleigh-Taylor turbulence: self-similar analysis and direct numerical simulations, J. Fluid Mech., 507, 213 (2004) · Zbl 1134.76364
[898] Roberts, J. K.; Miller, A. R., Heat and Thermodynamics, Vol. 4 (1954), Interscience Publishers
[899] Roberts, M. S.; Jacobs, J. W., The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh-Taylor instability, J. Fluid Mech., 787, 50 (2016) · Zbl 1359.76119
[900] Roberts, P. D.; Rose, S. J.; Thompson, P. C.; Wright, R. J., The stability of multiple shell ICF targets, J. Phys. D: Appl. Phys., 13, 1957 (1980)
[901] Robey, H. F., Effects of viscosity and mass diffusion in hydrodynamically unstable plasma flows, Phys. Plasmas, 11, 4123 (2004)
[902] Robey, H. F.; Kane, J. O.; Remington, B. A.; Drake, R. P.; Hurricane, O. A.; Louis, H.; Wallace, R. J.; Knauer, J.; Keiter, P.; Arnett, D.; Ryutov, D. D., An experimental testbed for the study of hydrodynamic issues in supernovae, Phys. Plasmas, 8, 2446 (2001)
[903] Robey, H. F.; Zhou, Y.; Buckingham, A. C.; Keiter, P.; Remington, B. A.; Drake, R. P., The time scale for the transition to turbulence in a high Reynolds number, accelerated flow, Phys. Plasmas, 10, 614 (2003)
[904] Robinson, K.; Dursi, L. J.; Raicker, P. M.; Rosner, R.; Calder, A. C.; Zingale, M.; Truran, J. W.; Linde, T.; Caceres, A.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N., Morphology of rising hydrodynamic and magnetohydrodynamic bubbles from numerical simulations, Astrophys J., 601, 621 (2004)
[905] Rodriguez Azara, J. L.; Emanuel, G., Compressible rotational flows generated by the substitution principle, Phys. Fluids, 31, 1058 (1988) · Zbl 0643.76111
[906] Rogallo, R. S.; Moin, P., Numerical simulation of turbulent flows, Annu. Rev. Fluid Mech., 16, 99 (1984) · Zbl 0604.76040
[907] Rollin, B.; Andrews, M. J., On generating initial conditions for turbulence models: the case of Rayleigh-Taylor instability turbulent mixing, J. Turbul., 14, 77 (2013)
[908] Rosen, P. A.; Wilde, B. H.; Williams, R. J.R.; Foster, J. M.; Keiter, P. A.; Coker, R. F.; Perry, T. S.; Taylor, M. J.; Khokhlov, A. M.; Drake, R. P.; Bennett, G. R.; Sinars, D. B.; Campbell, R. B., Recent experimental results and modelling of high-Mach-number jets and the transition to turbulence, Astrophys. Space Sci., 298, 121 (2005) · Zbl 1132.85320
[909] Rosslowe, C. K.; Crowther, P. A., Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population, Mon. Not. R. Astron. Soc., 447, 2322 (2015)
[910] Rott, N., Diffraction of a weak shock with vortex generation, J. Fluid Mech., 1, 111 (1956) · Zbl 0071.20502
[911] Rott, N., Lord Rayleigh and hydrodynamic similarity, Phys. Fluids A, 4, 2595 (1992)
[912] Roy, S.; Mandal, L. K.; Khan, M.; Gupta, M. R., Combined effect of viscosity, surface tension and compressibility on Rayleigh-Taylor bubble growth between two fluids, ASME J. Fluids Eng., 136, 091101 (2014)
[913] Ruderman, M. S., Compressibility effect on the Rayleigh-Taylor instability with sheared magnetic fields, Solar Phys., 292, 47 (2017)
[914] Rudinger, G., Shock wave and flame interactions, (Thring, M. W., Combustions and Propulsion: Third AGARD Colloquium (1958), Pergamon: Pergamon New York), 153-182
[915] Rudinger, G.; Somers, L., Behaviour of small regions of different gases carried in accelerated gas flows, J. Fluid Mech., 7, 161 (1960) · Zbl 0092.42802
[916] Ruev, G. A.; Fedorov, A. V.; Fomin, V. M., Evolution of the diffusion mixing layer of two gases upon interaction with shock waves, J. Appl. Mech. Tech. Phys., 45, 328 (2004) · Zbl 1138.76433
[917] Ruev, G. A.; Fedorov, A. V.; Fomin, V. M., Development of the Richtmyer-Meshkov instability upon interaction of diffusion mixing layer of two gases with shock waves, J. Appl. Mech. Tech. Phys., 46, 307 (2005) · Zbl 1083.76027
[918] Ruev, G. A.; Fedorov, A. V.; Fomin, V. M., Development of the Rayleigh-Taylor instability due to interaction of a diffusion mixing layer of two gases with compression waves, Shock Waves, 16, 65 (2006) · Zbl 1195.76185
[919] Ruszkowski, R.; Enblin, T. A.; Brüggen, M.; Heinz, S.; Pfrommer, C., Impact of tangled magnetic fields on fossil radio bubbles, Mon. Not. Astron. Soc., 378, 662 (2007)
[920] Ryutov, D. D.; Remington, B. A., Scaling astrophysical phenomena to high-energy-density laboratory experiments, Plasma Phys. Control. Fusion, 44, B407 (2002)
[921] Ryutov, D. D.; Remington, B. A., A ‘perfect’ hydrodynamic similarity and effect of the Reynolds number on the global scale motion, Phys. Plasmas, 10, 2629 (2003)
[922] Ryutov, D. D.; Drake, R. P.; Kane, J.; Liang, E.; Remington, B. A.; Wood-Vasey, W. M., Similarity criteria for the laboratory simulation of supernova hydrodynamics, Astrophys. J., 518, 821 (1999)
[923] Ryutov, D. D.; Derzon, M. S.; Matzen, M. K., The Physics of fast Z pinches, Rev. Mod. Phys., 72, 167 (2000)
[924] Saddoughi, S. G.; Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., 268, 333 (1994)
[925] Sadot, O.; Erez, L.; Alon, U.; Oron, D.; Levin, L. A.; Erez, G.; Ben-Dor, G.; Shvarts, D., Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability, Phys. Rev. Lett., 80, 1654 (1998)
[926] Sadot, O.; Rikanati, A.; Oron, D.; Ben-Dor, G.; Shvarts, D., An experimental study of the high Mach number and high initial-amplitude effects on the evolution of the single-mode Richtmyer-Meshkov instability, Laser Part. Beams, 21, 341 (2003)
[927] Saffman, P. G., The large-scale structure of homogeneous turbulence, J. Fluid Mech., 27, 581 (1967) · Zbl 0148.22403
[928] Saffman, P. G., Vortex Dynamics, 141 (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0777.76004
[929] Saffman, P. G.; Meiron, D. I., Kinetic energy generated by the incompressible Richtmyer-Meshkov instability in a continuously stratified fluid, Phys. Fluids A, 1, 1767 (1989) · Zbl 0684.76108
[930] Sagaut, P., Large Eddy Simulation for incompressible Flows (2006), Springer: Springer Berlin · Zbl 1091.76001
[931] Sagaut, P.; Cambon, C., Homogeneous Turbulence Dynamics (2008), Cambridge University Press · Zbl 1154.76003
[932] Sagert, I.; Howell, J.; Staber, A.; Strother, T.; Colbry, D.; Bauer, W., Knudsen-number dependence of two-dimensional single-mode Rayleigh-Taylor fluid instabilities, Phys. Rev. E, 92, 013009 (2015)
[933] Samtaney, R.; Zabusky, N. J., Baroclinic circulation generation on shock accelerated slow/fast gas interfaces, Phys. Fluids, 10, 1217 (1998) · Zbl 1185.76806
[934] Samulyak, R.; Prykarpatskyy, Y., Richtmyer-Meshkov instability in liquid metal flows: influence of cavitation and magentic fields, Mathematics and Computers in Simulations, 65, 431 (2004) · Zbl 1146.76597
[935] Sano, T.; Nishihara, K.; Matsuoka, C.; Inoue, T., Magnetic field amplification associated with the Richtmyer-Meshkov instability, Astrophys. J., 758, 126 (2012)
[936] Saric, W. S.; Reed, H. L.; White, E. B., Stability and transition of three-dimensional boundary layers, Annu. Rev. Fluid Mech., 35, 413 (2003) · Zbl 1039.76018
[937] Saurel, R.; Huber, G.; Jourdan, G.; Lapébie, E.; Munier, L., Modelling spherical explosions with turbulent mixing and post-detonation, Phys. Fluids, 24, 115101 (2012)
[938] Sazonov, S. V., Dissipative structures in the F-region of the equatorial ionosphere generated by Rayleigh-Taylor instability, Planet. Space Sci., 39, 1667 (1991)
[939] Scannapieco, E.; Brüggen, M., Subgrid modeling of AGN-driven turbuelnce in galaxy clusters, Astrophys. J., 686, 927 (2008)
[940] Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; Grover, M.; Lalone, B. M.; Monfared, S. K.; Sorenson, D. S.; Stevens, G. D.; Turley, W. D., Ejected particle size distributions from shocked metal surfaces, J. Dyn. Behav. Mater., 3, 217 (2017)
[941] Schill, W.; Wasem, J. V.; Owen, J. M., Modelling and simulation of cratering and ejecta production during high velocity impacts, J. Dyn. Behav. Mater., 3, 180 (2017)
[942] Schilling, O.; Mueschke, N. J., Analysis of turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow using direct numerical simulation data, Phys. Fluids, 22, 105102 (2010)
[943] Schilling, O.; Zhou, Y., Analysis of spectral eddy viscosity and backscatter in incompressible, isotropic turbulence using statistical closure theory, Phys. Fluids, 14, 1244 (2002)
[944] Schneider, M.; Dimonte, G.; Remington, B., Large and small scale structure in Rayleigh-Taylor mixing, Phys. Rev. Lett., 80, 3507 (1998)
[945] Schranner, F. S.; Domaradzki, J. A.; Hickel, S.; Adams, N. A., Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows, Comput. & Fluids, 114, 84 (2015) · Zbl 1390.76513
[946] Schultz, D. M.; Kanak, K. M.; Straka, J. M.; Trapp, R. J.; Gordon, B. A.; Zrnic, D. S.; Bryan, G. H.; Durant, A. J.; Garrett, T. J.; Klein, P. M.; Lilly, D. K., The mysteries of mammatus clouds: Observations and formation mechanisms, J. Atmos. Sci., 63, 2409 (2006)
[947] Schumann, U., Subgrid-scale model for finite-difference simulations of turbulence in plane channels and annuli, J. Comput. Phys., 18, 376 (1975) · Zbl 0403.76049
[948] Schwartzschild, M., Structure and Evolution of The Stars (1965), Dover: Dover NY
[949] Scorer, R. S., Experiments on convection of isolated masses of buoyant fluid, J. Fluid Mech., 2, 583 (1957)
[950] Seager, S.; Kuchner, M.; Hier-Majumder, C. A.; Militzer, B., Mass-radius relationships for solid exoplanets, Astrophys. J., 669, 1279 (2007)
[951] Sedov, L. I., Mechanics of Continuous Media (1997), World Scientific: World Scientific Singapore · Zbl 0949.74500
[952] Selig, F.; Wermund, E. G., Families of salt domes in the gulf coastal province, Geophysics, 31, 726 (1966)
[953] Sen, S.; Fukuyama, A.; Honary, F., Rayleigh Taylor instability in a dusty plasma, J. Atmos. Sol.-Terr. Phys., 72, 938 (2010)
[954] Serra, S.; Toutant, A.; Bataille, F.; Zhou, Y., Turbulent kinetic energy spectrum in very anisothermal flows, Phys. Lett. A, 376, 3177 (2012)
[955] Serra, S.; Toutant, A.; Bataille, F.; Zhou, Y., High-temperature gradient effect on a turbulent channel flow using thermal large-eddy simulation in physical and spectral spaces, J. Turbul., 13, 1 (2012) · Zbl 1273.76218
[956] Shadloo, M. S.; Zainali, A.; Yildiz, M., Simulation of single mode Rayleigh-Taylor instability by SPH method, Comput. Mech., 51, 699 (2013) · Zbl 1308.76130
[957] Shao, J.-L.; Wang, P.; He, A.-M.; Duan, S.-Q.; Qin, C.-S., Atomistic simulations of shock-induced microjet from a grooved aluminium surface, J. Appl. Phys., 113, 153501 (2013)
[958] Shao, J.-L.; Wang, P.; He, A.-M., Microjetting from a grooved Al surface under supported and unsupported shocks, J. Appl. Phys., 116, 073501 (2014)
[959] Sharp, D. H., An overview of Rayleigh-Taylor instability, Physica D, 12, 3 (1984) · Zbl 0577.76047
[960] Sharp, D. H.; Wheeler, J. A., Late Stage of Rayleigh-Taylor instability, institute for Defense Analysis, Report AD-A009 943 (1961), Distributed by National Technical Information Service, U. S. Department of Commence
[961] Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T., Achieving stable radiation pressure acceleration of heavy ions via successive electron replenishment from ionization of a High-Z material coating, Phys. Rev. Lett., 118, 204802 (2017)
[962] Shetty, R.; Ostriker, E. C., Cloud and star formation in disk galaxy models with feedback, Astrophys. J., 684, 978 (2008)
[963] Shigeyama, T.; Nomoto, K., Theoretical light curve of SN 1987A and mixing of hydrogen and nickel in the ejecta, Astrophys. J., 360, 242 (1990)
[964] Shigeyama, T.; Nomoto, K.; Hashimoto, M., Hydrodynamical models and the light curve of Supernova 1987A in the Large Magellanic Cloud, Astron. Astrophys., 196, 141 (1988)
[965] Shirkey, R. C., The radio dynamical evolution of young supernova remnants, Astrophys. J., 224, 477 (1978)
[966] Shu, C.-W., High order ENO and WENO schemes for computational fluid dynamics, (Barth, T. J.; Deconinck, H., High-Order Methods for Computational Physics (1999), Springer-Verlag: Springer-Verlag New York), 439 · Zbl 0937.76044
[967] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439 (1988) · Zbl 0653.65072
[968] Shu, H.; Fu, S.; Huang, X.; Wu, J.; Xie, Z.; Zhang, F.; Ye, J.; Jia, G.; Zhou, H., Measuring preheat in laser-drive aluminum using velocity interferometer system for any reflector: Experiment, Phys. Plasmas, 21, 082708 (2014)
[969] Shvarts, D.; Alon, U.; Ofer, O.; McCrory, R. L.; Verdon, C. P., Nonlinear evolution of multimode Rayleigh-Taylor instabiltiy in two and three dimensions, Phys. Plasmas, 2, 2465 (1995)
[970] Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L., Scaling laws of nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in two and three dimensions, C, R. Acad. Sci. Paris, Série IV, 1, 719 (2000)
[971] Si, T.; Zhai, Z.; Yang, J.; Luo, X., Experimental investigation of reshocked spherical gas interfaces, Phys. Fluids, 24, 054101 (2012)
[972] Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Kline, J. L.; Clark, D. S.; Milovich, J. L.; Salmonson, J. D.; Batha, S. H., Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility, Phys. Plasmas, 21, 022701 (2014)
[973] Siqueiros, D.A., Collective suicide. Museum of Modern Art, New York, http://www.moma.org/collection/object.php?object_id=79146; Siqueiros, D.A., Collective suicide. Museum of Modern Art, New York, http://www.moma.org/collection/object.php?object_id=79146
[974] Skinner, M. A.; Burrows, A.; Dolence, J. C., Should one use the ray-by-ray approximation in core-collapse supernova simulations?, Astrophys. J., 831, 81 (2016)
[975] Skrbek, L.; Stalp, S. R., On the decay of homogeneous isotropic turbulence, Phys. Fluids, 12, 1997 (2000) · Zbl 1184.76513
[976] Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.; Sefkow, A. B.; Sinars, D. B.; Rovang, D. C.; Peterson, K. J.; Cuneo, M. E., Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field, Phys. Plasmas, 17, 056303 (2010)
[977] Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99 (1963)
[978] Smalyuk, V. A., Experimental techniques for measuring Raleigh-Taylor instability in inertial confinement fusion, Phys. Scr., 86, 058204 (2012)
[979] Smalyuk, V. A.; Boehly, T. R.; Bradley, D. K.; Goncharov, V. N.; Delettrez, J. A.; Knauer, J. P.; Meyerhofer, D. D.; Oron, D.; Shvarts, D., Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets, Phys. Rev. Lett., 81, 5342 (1998)
[980] Smalyuk, V. A.; Boehly, T. R.; Bradley, D. K.; Goncharov, V. N.; Delettrez, J. A.; Knauer, J. P.D.; Meyerhofer, D.; Oron, D.; Shvarts, D.; Srebro, Y.; Town, R. P.J., Nonlinear evolution of broad-bandwidth, laser-imprinted nonuniformities in planar targets accelerated by 351-nm laser light, Phys. Plasmas, 6, 4022 (1999)
[981] Smalyuk, V. A.; Delettrez, J. A.; Goncharov, V. N.; Marshall, F. J.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Town, R. P.J.; Yaakobi, B., Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments, Phys. Plasmas, 9, 2738 (2002)
[982] Smalyuk, V. A.; Sadot, O.; Delettrez, J. A.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C., Fourier-space nonlinear Rayleigh-Taylor growth measurements of 3D laser-imprinted modulations in planar targets, Phys. Rev. Lett., 95, 215001 (2005)
[983] Smalyuk, V. A.; Sadot, O.; Betti, R.; Goncharov, V. N.; Delettrez, J. A.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Shvarts, D., Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime, Phys. Plasmas, 13, 056312 (2006)
[984] Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Casey, D. T.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Edgell, D. H.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Haan, S. W.; Hamza, A.; Hatarik, R.; Hsing, W. W.; Izumi, N.; Khan, S.; Kilkenny, J. D.; Kline, J.; Knauer, J.; Landen, O. L.; Ma, T.; McNaney, J. M.; Mintz, M.; Moore, A.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R.; Sayre, D. B.; Schneider, M. B.; Tommasini, R.; Town, R. P.; Widmann, K.; Wilson, D. C.; Yeamans, C. B., Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility, Phys. Rev. Lett., 112, 025002 (2014)
[985] Smalyuk, V. A.; Casey, D. T.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hamza, A.; Hoover, D. E.; Hsing, W. W.; Hurricane Kilkenny, J. D.; Kroll, J.; Landen, O.; Moore, A.; Nikroo, A.; Peterson, L.; Raman, K.; Remington, B. A.; Robey, H. F.; Weber, S. V.; Widmann, K., First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility, Phys. Rev. Lett., 112, 185003 (2014)
[986] Smalyuk, V. A.; Weber, C. R.; Robey, H. F.; Casey, D. T.; Chen, K.-C.; Clark, D. S.; Farrell, M.; Felker, S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hoover, D.; Kroll, J. J.; Landen, O. L.; MacPhee, A. G.; Martinez, D.; Nikroo, A.; Rice, N., Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with “low-foot” and “high-foot” drives at the National Ignition Facility, Phys. Plasmas, 24, 042706 (2017)
[987] Smarr, L., Progenitors of core-collapse supernovae, Annu. Rev. Astron. Astrophys., 47, 63 (2009)
[988] Smarr, L.; Wilson, J. R.; Barton, R. T.; Bowers, R. L., Rayleigh-Taylor overturn in supernova core collapse, Astrophys. J., 246, 515 (1981)
[989] Smeeton, V. S.; Youngs, D. L., Experimental investigation of turbulent mixing by Rayleigh-Taylor instability, III, AWE Report N. O 35/87 (1987)
[990] Snider, D. M.; Andrews, M. J., Rayleigh-Taylor and shear driven with an unstable thermal stratification, Phys. Fluids, 6, 3324 (1994)
[991] Sohn, S.-I., Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios, Phys. Rev. E, 67, 026301 (2003)
[992] Sohn, S.-I., Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Rev. E, 69, 036703 (2004)
[993] Sohn, S.-I., Bubble interaction model for hydrodynamic unstable mixing, Phys. Rev. E, 75, 066312 (2007)
[994] Sohn, S.-I., Quantitative modeling of bubble competition in Richtmyer-Meshkov instability, Phys. Rev. E, 78, 017302 (2008)
[995] Sohn, S.-I., Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Rev. E, 80, 055302(R) (2009)
[996] Sohn, S.-I., Self-similar roll-up of a vortex sheet driven by a shear flow: Hyperbolic double spiral, Phys. Fluids, 28, 064104 (2016)
[997] Sohn, S.-I.; Baek, S., Bubble merger and scaling law of the Rayleigh-Taylor instability with surface tension, Phys. Lett. A, 381, 3812 (2017) · Zbl 1375.76056
[998] Sohn, S.-I.; Zhang, Q., Late time behavior of bubbles at unstable interfaces in two dimensions, Phys. Fluids, 13, 3493-3495 (2001) · Zbl 1184.76519
[999] Sorenson, D. S.; Capelle, G. A.; Grover, M.; Johnson, R. P.; Kaufman, M. I.; LaLone, B. M.; Malone, R. M., Measurements of Sn ejecta particle-size distributions using ultraviolet in-line Fraunhofer holography, J. Dyn. Behav. Mater., 3, 233 (2017)
[1000] Soulard, O., Implications of the Monin-Yaglom relation for Rayleigh-Taylor turbulence, Phys. Rev. Lett., 109, 254501 (2012)
[1001] Soulard, O.; Griffond, J., Inertial range anisotropy in Rayleigh-Taylor turbulence, Phys. Fluids, 24, 025101 (2012)
[1002] Soulard, O.; Griffond, J.; Gréa, B.-J., Large-scale analysis of self-similar unstably stratified homogeneous turbulence, Phys. Fluids, 26, 015110 (2014)
[1003] Soulard, O.; Griffond, J.; Gréa, B.-J., Large-scale analysis of unconfined self-similar Rayleigh-Taylor turbulence, Phys. Fluids, 27, 095103 (2015)
[1004] Spielman, R. B.; Deeney, C.; Chandler, G. A.; Douglas, M. R.; Fehl, D. L.; Matzen, M. K.; McDaniel, D. H., Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ, Phys. Plasmas, 5, 2105 (1998)
[1005] Spindloe, C.; Wyatt, D.; Haddock, D.; East, I.; Cross, J. E.; Danson, C. N.; Falize, E.; Foster, J. M.; Koenig, M.; Gregori, G., Target fabrication for the POLAR experiment on the Orion laser facility, High Power Laser Sci. Eng., 3, e8 (2015)
[1006] Statsenko, V. P.; Yanilkin, Yu. V.; Zhmaylo, V. Z., Direct numerical simulation of turbulent mixing, Phil. Trans. R. Soc. A, 371, 20120216 (2013)
[1007] Stixrude, L., Structure of Iron to 1 Gbar and 40000 K, Phys. Rev. Lett., 108, 055505 (2012)
[1008] Stokes, G. G., On the effect of the internal friction of fluids on the motion of pendulums, Cambr. Phil. Trans., IX, 8 (1851)
[1009] Sturtevant, B.; Kulkarny, V. A., The focusing of weak shock waves, J. Fluid Mech., 73, 651 (1976)
[1010] Subramaniam, A.; Ghaisas, N.; Lele, S., High-order Eulerian simulations of multi-material elastic-plastic Flow, ASME. J. Fluids Eng. (2017)
[1011] Sultan, P. J., Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, 26875 (1996)
[1012] Swegle, J. W.; Robinson, A. C., Acceleration instability in elastic-plastic solids I. Numerical simulations of plate acceleration, J. Appl. Phys., 66, 2838 (1989)
[1013] Takabe, H., Astrophysics with intense and ultra-intense lasers “laser astrophysics”, Prog. Theoret. Phys. Suppl., 143, 202 (2001)
[1014] Takabe, H., A historical perspective of developments in hydrodynamic instabilities, integrated codes and laboratory astrophysics, Nucl. Fusion, 44, S149 (2004)
[1015] Takabe, H.; Montierth, L.; Morse, R. L., Self-consistent eigenvalue analysis of Rayleigh-Taylor instability in an ablating plasma, Phys. Fluids, 26, 2299 (1983) · Zbl 0523.76108
[1016] Takabe, H.; Mima, K.; Montierth, L.; Morse, R. L., Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma, Phys. Fluids, 28, 3676 (1985) · Zbl 0587.76074
[1017] Takabe, H.; Yamanaka, M.; Mima, K.; Yamanaka, C.; Azechi, H.; Miyanaga, N.; Nakatsuka, M.; Jitsuno, T.; Norimatsu, T.; Takagi, M.; Nishimura, H.; Nakai, M.; Yabe, T.; Sasaki, T.; Yoshida, K.; Nishihara, K.; Kato, Y.; Izawa, Y.; Yamanaka, T.; Nakai, S., Scalings of implosion experiments for high neutron yield, Phys. Fluids, 31, 2884 (1988)
[1018] Takabe, H. A.; Kato, T. N.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Kadono, T.; Shigemori, K.; Otani, K.; Nagatomo, H.; Norimatsu, T.; Dono, S., High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers, Plasma Phys. Contr. Fusion, 50, 124057 (2008)
[1019] Tang, W.; Mahalov, A., Stochastic Lagrangian dynamics for charged flows in the E-F regions of ionosphere, Phys. Plasmas, 20, 032305 (2013)
[1020] Tanveer, S., Singularities in the classical Rayleigh-Taylor flow: formation and subsequent motion, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 441, 501 (1993) · Zbl 0789.76031
[1021] Tassart, J., Overview of inertial fusion and high-intensity laser plasma research in Europe, Nucl. Fusion, 44, S134 (2004)
[1022] Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their plane, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 201, 192 (1950) · Zbl 0038.12201
[1023] Taylor, G. I., The interaction between experiment and theory in fluid mechanics, Annu Rev. Fluid Mech., 6, 1 (1974) · Zbl 0292.76002
[1024] Tennekes, H.; Lumley, J. L., First Course in Turbulence (1972), MIT Press: MIT Press Cambridge, MA · Zbl 0285.76018
[1025] Terrones, G., Fastest growing linear Rayleigh-Taylor modes at solid/fluid and solid/solid interfaces, Phys. Rev. E, 71, 036306 (2005)
[1026] Thomas, G. O., The aerodynamic breakup of ligaments, Atom. Sprays, 13, 117 (2003)
[1027] Thomas, V. A.; Kares, R. J., Drive asymmetry and the origin of turbulence in an ICF implosion, Phys. Rev. Lett., 109, 075004 (2012)
[1028] Thormann, A.; Meneveau, C., Decay of homogeneous, nearly isotropic turbulence behind active fractal grids, Phys. Fluids, 26, 025112 (2014)
[1029] Thornber, B., Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability, Phys. Fluids, 28, 045106 (2016)
[1030] Thornber, B.; Drikakis, D., Large-eddy simulation of shock-wave-induced turbulent mixing, ASME J. Fluids Eng., 129, 1504 (2007)
[1031] Thornber, B.; Zhou, Y., Energy transfer in the Richtmyer-Meshkov instability, Phys. Rev. E, 86, 056302 (2012)
[1032] Thornber, B.; Mosedale, A.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., An improved reconstruction method for compressible flows with low Mach number features, J. Comput. Phys., 227, 4873 (2008) · Zbl 1388.76188
[1033] Thornber, B.; Drikakis, D.; Williams, R.; Youngs, D., On Entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes, J. Comput. Phys., 227, 4853 (2008) · Zbl 1142.65073
[1034] Thornber, B.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability, J. Fluid Mech., 654, 99 (2010) · Zbl 1193.76066
[1035] Thornber, B.; Bilger, R. W.; Masri, A. R.; Hawkes, E. R., An algorithm for LES of premixed compressible flows using the conditional moment closure model, J. Comput. Phys., 230, 7687 (2011) · Zbl 1433.76060
[1036] Thornber, B.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., Growth of a Richtmyer-Meshkov turbulent layer after reshock, Phys. Fluids, 23, 095107 (2011)
[1037] Thoroddsen, S. T.; van Atta, C. W.; Yampolsky, J. S., Experiments on homogeneous turbulence in an unstably stratified fluid, Phys. Fluids, 10, 3155 (1998)
[1038] Tian, B.-L.; Zhang, X.-T.; Qi, J.; Wang, S.-H., Effects of a premixed layer on the Richtmyer-Meshkov instability, Chin. Phys. Lett., 28, 114701 (2011)
[1039] Tian, B.-L.; Shen, W.-D.; Jiang, S.; Wang, S.-H.; Yan, L., A global arbitrary Lagrangian-Eulerian method for stratified Richtmyer-Meshkov instability, Comput. & Fluids, 46, 113 (2011) · Zbl 1431.76016
[1040] Tian, L.; Russell, A., Phase field study of interfacial diffusion-driven spheroidization in a composite comprised of two mutually insoluble phases, J. Chem. Phys., 140, 124706 (2014)
[1041] Tommasini, R.; Field, J. E.; Hammel, B. A.; Landen, O. L.; Haan, S. W.; Aracne-Ruddle, C.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Doeppner, T., Tent-induced perturbations on areal density of implosions at the National Ignition Facility, Phys. Plasmas, 22, 056315 (2015)
[1042] Townsend, A. A., Structure of Turbulent Shear Flow (1976), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0325.76063
[1043] Trimble, V., Motions and structure of the filamentary envelope of the Crab Nebula, Astron. J., 73, 535 (1968)
[1044] Tritschler, V. K.; Hickel, S.; Hu, X. Y.; Adams, N. A., On the Kolmogorov inertial subrange developing from Richtmyer-Meshkov instability, Phys. Fluids, 25, 071701 (2013)
[1045] Tritschler, V. K.; Hu, X. Y.; Hickel, S.; Adams, N. A., Numerical simulation of a Richtmyer-Meshkov instability with an adaptive central-upwind sixth-order WENO scheme, Phys. Scr. T, 155, 014016 (2013)
[1046] Tritschler, V. K.; Olson, B. J.; Lele, S. K.; Hickel, S.; Hu, X. Y.; Adam, N. A., On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface, J. Fluid Mech., 755, 429 (2014)
[1047] Tritschler, V. K.; Zubel, M.; Hickel, S.; Adams, N. A., Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations, Phys. Rev. E., 90, 063001 (2014)
[1048] Tryggvason, G., Numerical simulations of the Rayleigh-Taylor instability, J. Comput. Phys., 75, 253 (1988) · Zbl 0638.76056
[1049] Tryggvason, G.; Unverdi, S. O., Computations of three-dimensional Rayleigh-Taylor instability, Phys. Fluids A, 2, 656 (1990)
[1050] Tsiklashvili, V.; Romero Colio, P. E.; Likhachev, O. A.; Jacobs, J. W., An experimental study of small Atwood number Rayleigh-Taylor instability using the magnetic levitation of paramagnetic fluids, Phys. Fluids, 24, 052106 (2012)
[1051] Turner, J. S., Buoyancy Effects in Fluids (1973), Cambridge Univ. Press: Cambridge Univ. Press London · Zbl 0262.76067
[1052] Uchiyama, Y.; Aharonian, F. A., Fast variability of nonthermal X-ray emission in Cassiopeia A: probing electron acceleration in reverse-shocked ejecta, Astrophys. J. Lett., 677, L105 (2008)
[1053] Uchiyama, Y.; Aharonian, F. A.; Tanaka, T.; Takahashi, T.; Maeda, Y., Extremely fast acceleration of cosmic rays in a supernova remnant, Nature, 449, 576 (2007)
[1054] Unverdi, S. O.; Tryggvason, G., Computations of multi-fluid flows, Physica D, 60, 70 (1992) · Zbl 0779.76101
[1055] Vandenboomgaerde, M., Nonlinear analytic growth rate of a single-mode Richtmyer-Meshkov instability, Laser Part. Beams, 21, 317 (2003)
[1056] Vandenboomgaerde, M.; Lafitte, O., Analytic model for the single-mode Richtmyer-Meshkov instability from the linear to the nonlinear regime, (Dalziel, S., Proceedings of 9th International Workshop on The Physics of Compressible Turbulent Mixing (2004), Cambridge: Cambridge UK)
[1057] Vandenboomgaerde, M.; Mügler, C.; Gauthier, S., Impulsive model for the Richtmyer-Meshkov instability, Phys. Rev. E, 58, 1874 (1998)
[1058] Vandenboomgaerde, M.; Gauthier, S.; Mügler, C., Nonlinear regime of a multimode Richtmyer-Meshkov instability: A simplified perturbation theory, Phys. Fluids, 14, 1111 (2002) · Zbl 1185.76607
[1059] Vandenboomgaerde, M.; Cherfils, C.; Galmiche, D.; Gauthier, S.; Raviart, P. A., Efficient perturbation methods for Richtmyer-Meshkov and Rayleigh-Taylor instabilities: Weakly nonlinear stage and beyond, Laser Part. Beams, 21, 321 (2003)
[1060] Vandenboomgaerde, M.; Souffland, D.; Mariani, C.; Biamino, L.; Jourdan, G.; Houas, L., An experimental and numerical investigation of the dependency on the initial conditions of the Richtmyer-Meshkov instability, Phys. Fluids, 26, 024109 (2014)
[1061] Vanden-Broeck, J.-M., Bubbles rising in a tube and jets falling from a nozzle, Phys. Fluids, 27, 1090 (1984) · Zbl 0577.76095
[1062] Vandervoort, P. O., The character of the equilibrium of a compressible, inviscid fluid of varying density, Astrophys. J., 134, 699 (1961)
[1063] Vassilenko, A.M., Buryakov, O.V., Kuropatenko, V.F., Olkhovskaya, V.I., Ratnikov, V.P., Jakovlev, V.G., 1992. Experimental research of gravitational instability and turbulization of flow at the noble gases interface. In: Dannevik, W.P., Buckingham, A.C., Leith, C.E. (Eds.), Advances in Compressible Turbulent Mixing, First Intl Workshop on the Physics of Compressible Turbulent Mixing, p. 581.; Vassilenko, A.M., Buryakov, O.V., Kuropatenko, V.F., Olkhovskaya, V.I., Ratnikov, V.P., Jakovlev, V.G., 1992. Experimental research of gravitational instability and turbulization of flow at the noble gases interface. In: Dannevik, W.P., Buckingham, A.C., Leith, C.E. (Eds.), Advances in Compressible Turbulent Mixing, First Intl Workshop on the Physics of Compressible Turbulent Mixing, p. 581.
[1064] Veeresha, B. M.; Das, A.; Sen, A., Rayleigh-Taylor instability driven nonlinear vortices in dusty plasmas, Phys. Plasmas, 12, 044506 (2005)
[1065] Velikovich, A. L., Analytic theory of Richtmyer-Meshkov instability for the case of reflected rarefaction wave, Phys. Fluids, 8, 1666 (1996) · Zbl 1087.76042
[1066] Velikovich, A. L.; Dimonte, G., Nonlinear perturbation theory of the incompressible Richtmyer-Meshkov instability, Phys. Rev. Lett., 76, 3112 (1996)
[1067] Velikovich, A. L.; Cochran, F. L.; Davis, J., Suppression of Rayleigh-Taylor instability in Z-pinch loads with tailored density profiles, Phys. Rev. Lett., 77, 853 (1996)
[1068] Velikovich, A. L.; Dahlburg, J. P.; Schmitt, A. J.; Gardner, J. H.; Phillips, L.; Cochran, F. L.; Chong, Y. K.; Dimonte, G.; Metzler, N., Richtmyer-Meshkov-like instabilities and early-time perturbation growth in laser targets and Z-pinch loads, Phys. Plasmas, 7, 1662 (2000)
[1069] Velikovich, A. L.; Herrmann, M.; Abarzhi, S. I., Perturbation theory and numerical modeling of weakly and moderately nonlinear dynamics of the incompressible Richtmyer-Meshkov instability, J. Fluid Mech., 751, 432 (2014)
[1070] Verdon, C. P.; McCrory, R. L.; Morse, R. L.; Baker, G. R.; Meiron, D. I.; Orszag, S. A., Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells, Phys. Fluids, 25, 1653 (1982) · Zbl 0493.76124
[1071] Versluis, M.; Schmitz, B.; von der Heydt, A.; Lohse, D., How snapping shrimp snap: Through cavitating bubbles, Science, 289, 2114 (2000)
[1072] Vetter, M.; Sturtevant, B., Experiments on the Richtmyer-Meshkov instability of an air/\(SF_6\) interface, Shock Waves, 4, 247 (1995)
[1073] Veynante, D.; Vervisch, L., Turbulent combustion modeling, Prog. Energy Combustion Sci., 28, 193-266 (2002)
[1074] Veynante, D.; Trouvé, A.; Bray, K. N.C.; Mantel, T., Gradient counter-gradient scalar transport in turbulent premixed flames, J. Fluid Mech., 332, 263 (1997) · Zbl 0900.76738
[1075] Vishniac, E. T., The dynamic and gravitational instabilities of spherical shocks, Astrophys. J., 274, 152 (1983)
[1076] Vladimirova, N.; Chertkov, M., Self-similarity and universality in Rayleigh-Taylor, Boussinesq turbulence, Phys. Fluids, 21, 015102 (2009) · Zbl 1183.76550
[1077] Vlasov, Y.A., Gerasimov, S.I., Gubkov, E.V., Dudin, V.I., Kopyshev, V.P., Meshkov, E.E., Nikulin, A.A., Ryabov, V.P., Tilkunov, V.A., 1996. Shock tube with GEM-driver. Preprint 47-96. RFNC-VNIIEF.; Vlasov, Y.A., Gerasimov, S.I., Gubkov, E.V., Dudin, V.I., Kopyshev, V.P., Meshkov, E.E., Nikulin, A.A., Ryabov, V.P., Tilkunov, V.A., 1996. Shock tube with GEM-driver. Preprint 47-96. RFNC-VNIIEF.
[1078] Vreman, A. M., An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids, 16, 3670 (2004) · Zbl 1187.76543
[1079] Waddell, J. T.; Niederhaus, C. E.; Jacobs, J. W., Experimental study of Rayleigh-Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations, Phys. Fluids, 13, 1263 (2001) · Zbl 1184.76579
[1080] Waitz, I. A.; Marble, F.; Zukoski, E. E., Investigation of a contoured wall injector for hypervelocity mixing augmentation, AIAA J., 31, 1014 (1993)
[1081] Walchli, B.; Thornber, B., Reynolds number effects on the single-mode Richtmyer-Meshkov instability, Phys. Rev. E, 95, 013104 (2017)
[1082] Wang, C.-Y.; Chevalier, R. A., Instabilities and clumping in type Ia supernova remnants, Astrophys. J., 549, 1119 (2001)
[1083] Wang, J.; Smith, R. F.; Eggert, J. H.; Braun, D. G.; Boehly, T. R.; Patterson, J. R.; Celliers, P. M.; Jeanloz, R.; Collins, G. W.; Duffy, T. S., Ramp compression of iron to 273 GPa, J. Appl. Phys., 114, 023513 (2013)
[1084] Wang, L.; Li, J., Fluid mixing due to Rayleigh-Taylor instability in a time-dependent acceleration field, Commun. Nonlinear Sci. Numer. Simul., 10, 571 (2005) · Zbl 1068.76032
[1085] Wang, L.; Li, J.; Xie, Z., Large-eddy simulation of 3-dimensional Rayleigh-Taylor instability in incompressible fluids, Sci, China A, 45, 95 (2002)
[1086] Wang, L. F.; Ye, W. H.; Fan, Z. F.; Li, Y. J.; He, X. T.; Yu, M. Y., Weakly nonlinear analysis on the Kelvin-Helmholtz instability, Europhys. Lett., 86, 15002 (2009)
[1087] Wang, L. F.; Xue, C.; Ye, W. H.; Li, Y. J., Destabilizing effect of density gradient on the Kelvin-Helmholtz instability, Phys. Plasmas, 16, 112104 (2009)
[1088] Wang, L. F.; Ye, W. H.; Li, Y. J., Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime, Phys. Plasmas, 17, 052305 (2010)
[1089] Wang, L. F.; Ye, W. H.; Fan, Z. F.; Li, Y. J., Nonlinear saturation amplitude in the Rayleigh-Taylor instability at arbitrary Atwood numbers with continuous profiles, Europhys. Lett., 90, 15001 (2010)
[1090] Wang, L. F.; Ye, W. H.; Sheng, Z. M.; Don, W.-S.; Li, Y. J.; He, X. T., Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime, Phys. Plasmas, 17, 122706 (2010)
[1091] Wang, T.; Tao, G.; Bai, J. S.; Li, P.; Wang, B., Numerical comparative analysis of Richtmyer-Meshkov instability simulated by different SGS, Can. J. Phys., 93, 519 (2015)
[1092] Wang, T.; Bai, J. S.; Li, P.; Wang, B.; Du, L.; Tao, G., Large-eddy simulations of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock, High Energy Density Phys., 19, 65 (2016)
[1093] Wang, W.-M.; Nepveu, M., A numerical study of the nonlinear Rayleigh-Taylor instability, with application to accreting X-ray sources, Astron. Astrophys., 118, 267 (1983)
[1094] Wang, W.-M.; Nepveu, M.; Robertson, J. A., Further numerical studies of the Rayleigh-Taylor instability in the context of accreting X-ray sources, Astron. Astrophys., 135, 66 (1984)
[1095] Wang, X.-L.; Itoh, M.; Shi, H.-H.; Kishimoto, M., Experimental study of Rayleigh-Taylor instability in a shock tube accompanying cavity formation, Jpn. J. Appl. Phys., 40, 6668 (2001)
[1096] Ward, G. M.; Pullin, D. I., A hybrid, center-difference, limiter method for simulations of compressible multicomponent flows with Mie-Grüneisen equation of state, J. Comput. Phys., 229, 2999 (2010) · Zbl 1307.76063
[1097] Ward, G. M.; Pullin, D. I., A study of planar Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state, Phys. Fluids, 23, 076101 (2011)
[1098] Watt, R. G.; Duke, J.; Fontes, C. J.; Gobby, P. L.; Hollis, R. V.; Kopp, R. A.; Mason, R. J.; Wilson, D. C.; Verdon, C. P.; Boehly, T. R.; Knauer, J. P.; Meyerhofer, D. D.; Smalyuk, V.; Town, R. P.J.; Iwase, A.; Willi, O., Laser imprint reduction using a low-density foam buffer as a thermal smoothing layer at 351-nm wavelength, Phys. Rev. Lett., 81, 4644 (1998)
[1099] Weber, C. R.; Haehn, N. S.; Oakley, J. G.; Rothamer, D. A.; Bonazza, R., Turbulent measurements in the Richtmyer-Meshkov instability, Phys. Fluids, 24, 074105 (2012)
[1100] Weber, C. R.; Cook, A. W.; Bonazza, R., Growth rate of a shocked mixing layer with known initial perturbations, J. Fluid Mech., 725, 372 (2013) · Zbl 1287.76164
[1101] Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F., Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation, Phys. Rev. E, 89, 053106 (2014)
[1102] Weber, C. R.; Haehn, N. S.; Oakley, J. G.; Rothamer, D. A.; Bonazza, R., An experimental investigation of the turbulent mixing transition in the Richtmyer-Meshkov instability, J. Fluid Mech., 748, 457 (2014)
[1103] Wei, T.; Livescu, D., Late-time quadratic growth in single-mode Rayleigh-Taylor instability, Phys. Rev. E, 86, 046405 (2012)
[1104] Welser-Sherrill, L.; Mancini, R. C.; Haynes, D. A.; Haan, S. W.; Golovkin, I. E.; MacFarlane, J. J.; Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Koch, J. A.; Izumi, N.; Tommasini, R.; Smalyuk, V. A., Development of two mix model postprocessors for the investigation of shell mix in indirect drive implosion core, Phys. Plasmas, 14, 072705 (2007)
[1105] Welser-Sherrill, L.; Cooley, J. H.; Haynes, D. A.; Wilson, D. C.; Sherrill, M. E.; Mancini, R. C.; Tommasini, R., Application of fall-line mix models to understand degraded yield, Phys. Plasmas, 15, 072702 (2008)
[1106] Welser-Sherrill, L.; Fincke, J.; Doss, F.; Loomis, E.; Flippo, K.; Offermann, D.; Keiter, P.; Haines, B.; Grinstein, F., Two laser-driven mix experiments to study reshock and shear, High Energy Density Phys., 9, 496 (2013)
[1107] Wheeler, J. C.; Harkness, R. P., Type I supernovae, Pep. Prog. Phys., 53, 1467 (1990)
[1108] White, D. A., Siqueiros: Biography of A Revolutionary Artist (2009), BookSurge Publishing
[1109] White, J.; Oakley, J.; Anderson, M.; Bonazza, R., Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid, Phys. Rev. E, 81, 026303 (2010)
[1110] Whitehead, J. A.; Luther, D. S., Dynamics of laboratory diaper and plume models, J. Geophys. Res., 80, 705 (1975)
[1111] Wilcock, W. S.D.; Whitehead, J. A., The Rayleigh-Taylor instability of an embedded layer of low-viscosity fluid, J. Geophys. Res., 96, 12193 (1991)
[1112] Wilkinson, J. P.; Jacobs, J. W., Experimental study of the single-mode three-dimensional Rayleigh-Taylor instability, Phys. Fluids, 19, 124102 (2007) · Zbl 1182.76828
[1113] Williams, R. J.R., The late time structure of high density contrast, single mode Richtmyer-Meshkov flow, Phys. Fluids, 28, 074108 (2016)
[1114] Williams, R.J.R., 2017. Sub-grid properties and articial viscous stresses in staggered-mesh schemes (submitted for publication).; Williams, R.J.R., 2017. Sub-grid properties and articial viscous stresses in staggered-mesh schemes (submitted for publication).
[1115] Williams, R. J.R.; Grapes, C. C., Simulation of double-shock ejecta production, J. Dyn. Behav. Mater., 3, 291 (2017)
[1116] Wilson, B. M.; Mejia-Alvarez, R.; Prestridge, K. P., Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos vertical shock tube, ASME J. Fluids Eng., 138, 071201 (2016)
[1117] Wilson, D. C.; Scannapieco, A. J.; Cranfill, C. W.; Clover, M. R.; Hoffman, N. M.; Collins, J., Degradation of radiatively driven inertial confinement fusion capsule implosions by multifluid interpenetration mixing, Phys. Plasmas, 10, 4427 (2003)
[1118] Wilson, D. C.; Cranfill, C. W.; Christensen, C.; Forster, R. A.; Peterson, R. R.; Hoffman, N. M.; Pollak, G. D.; Li, C. K.; Seguin, F. H.; Frenje, J. A.; Petrasso, R. D.; McKenty, P. W.; Marshall, F. J.; Glebov, V. Y.; Stoeckl, C.; Schmid, G. J.; Izumi, N.; Amendt, P., Multifluid interpenetration mixing in directly driven inertial confinement fusion capsule implosions, Phys. Plasmas, 11, 2723 (2004)
[1119] Woltjer, L., Supernova remnants, Annu. Rev. Astron. Astrophys., 10, 129 (1972)
[1120] Wongwathanarat, A.; Mueller, E.; Janka, H.-Th., Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout, Astron. Astrophys., 577, A48 (2015)
[1121] Wood, W. M.; Buttler, W. T.; Thomas, V. A.; Turley, W. D.; Stevens, G. D.; Grover, M.; Schmidt, D. W.; Martinez, J. I., Ejecta directions and size information from recent “sweeper wave” data in Sn, J. Dynamic Behavior Mater., 3, 240 (2017)
[1122] Woods, J. D., Wave-induced shear instability in the summer thermocline, J. Fluid Mech., 32, 791 (1968)
[1123] Wood-Vasey, W. M.; Budil, K. S.; Remington, B. A.; Glendinning, S. G.; Rubenchik, A. M.; Berning, M.; Kane, J. O.; Larsen, J. T., Computational modeling of classical and ablative Rayleigh-Taylor instabilities, Laser Part. Beams, 18, 583 (2000)
[1124] Woodward, P. R., The piecewise-parabolic Boltzmann Advection Scheme (PPB) Applied to Multifluid Hydrodynamics, Los Alamos National Laboratory Report No. LAUR-10-01823 (2010)
[1125] Woosley, S. E.; Weaver, T. A., The physics of supernova explosion, Annu. Rev. Astron. Astrophys., 24, 205 (1986)
[1126] Wouchuk, J. G., Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected, Phys. Rev. E, 63, 056303 (2001)
[1127] Wouchuk, J. G., Growth rate of the Richtmyer-Meshkov instability when a rarefaction is reflected, Phys. Plasmas, 8, 2890 (2001)
[1128] Wouchuk, J. G.; Cobos Campos, F., Linear theory of Richtmyer-Meshkov like flows, Plasma Phys. Control. Fusion, 59, 014033 (2017)
[1129] Wouchuk, J. G.; Nishihara, K., Linear perturbation growth at a shocked interface, Phys. Plasmas, 3, 3761 (1996)
[1130] Wouchuk, J. G.; Nishihara, K., Asymptotic growth in the linear Richtmyer-Meshkov instability, Phys. Plasmas, 4, 1028 (1997)
[1131] Wu, C. C., Shock wave interaction with magnetopause, J. Geophys. Res., 105, 7533 (2000)
[1132] Wu, C. C.; Roberts, P. H., Richtmyer-Meshkov instability and the dynamics of the magnetosphere, Geophys. Res. Lett., 26, 655 (1999)
[1133] Wu, J. F.; Miao, W. Y.; Wang, L. F.; Yuan, Y. T.; Cao, Z. R.; Ye, W. H.; Fan, Z. F., Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility, Phys. Plasmas, 21, 042707 (2014)
[1134] Wunsch, C.; Ferrari, R., Vertical mixing energy and the general circulation of oceans, Annu. Rev. Fluid Mech., 36, 281-314 (2004) · Zbl 1125.86313
[1135] Xia, T. J.; Dong, Y. Q.; Cao, Y. G., Effects of surface tension on Rayleigh-Taylor instability, Acta Phys. Sin., 62, 214702 (2013)
[1136] Xia, T. J.; Wang, H. L.; Dong, Y. Q.; Guo, H. Z.; Cao, Y. G., Effects of head loss on the growth of the Rayleigh-Taylor and the Richtmyer-Meshkov instabilities, Int. J. Heat Mass Transfer, 84, 158 (2015)
[1137] Xie, C.-Y.; Tao, J. J.; Sun, Z. L.; Li, J., Retarding viscous Rayleigh-Taylor mixing by an optimized additional mode, Phys. Rev. E, 95, 023109 (2017)
[1138] Xie, C.-Y.; Tao, J.-J.; Li, J., Viscous Rayleigh-Taylor instability with and without diffusion effect, Appl. Math. Mech., 38, 263 (2017)
[1139] Xie, X.-F.; Li, Z.-C.; Li, S.-W.; Huang, Y.-B.; Jing, L.-F.; Yang, D.; Huo, W.-Y., Radiation flux study of spherical hohlraums at the SGIII prototype facility, Phys. Plasmas, 23, 112701 (2016)
[1140] Yaakobi, B.; Pelah, I.; Hoose, J., Preheat by fast electrons in laser-fusion experiments, Phys. Rev. Lett., 37, 836 (1976)
[1141] Yabe, T.; Hoshino, H.; Tsuchiya, T., Two- and three-dimensional behavior of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, Phys. Rev. A, 44, 2756 (1991)
[1142] Yaglom, A. M., On the local structure of a temperature field in a turbulent flow, Dokl. Akad. Nauk SSSR, 69, 743 (1949) · Zbl 0036.25701
[1143] Yakovenko, S. N., The effects of density difference and surface tension on the development of Rayleigh-Taylor instability of an interface between fluid media, Fluid Dyn., 49, 748 (2014) · Zbl 1308.76131
[1144] Yang, J.; Kubota, T.; Zukoski, E. E., Applications of shock-induced mixing in supersonic combustion, AIAA J., 31, 854 (1993)
[1145] Yang, Q.; Chang, J.; Bao, W., Richtmyer-Meshkov instability induced mixing enhancement in the scramjet combustor with a central strut, Adv. Mech. Eng., 6, 614189 (2014)
[1146] Yang, Y.; Zhang, Q.; Sharp, D. H., Small amplitude theory of Richtmyer-Meshkov instability, Phys. Fluids, 6, 1856 (1994) · Zbl 0831.76040
[1147] Yanilkin, Yu. V.; Shanin, A. A., EGAK codes for computing 2-D flows in multicomponent media, VANT Ser. Mat. Modelir. Fiz. Proc. N.4, 69 (1993), (in Russian)
[1148] Ye, W. H.; Zhang, W.; He, X. T., Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number, Phys. Rev. E, 65, 057401 (2002)
[1149] Yeung, P. K.; Brasseur, J. G., The response of isotropic turbulence to isotropic and anisotropic forcing at large scales, Phys. Fluids A, 3, 884 (1991)
[1150] Yeung, P. K.; Zhou, Y., Universality of the Kolmogorov constant in numerical simulations of turbulence, Phys. Rev. E, 56, 1746 (1997)
[1151] Yih, C.-S., A transformation for non-homentropic flows, with an application to large-amplitude motion in the atmosphere, J. Fluid Mech., 9, 68 (1960) · Zbl 0094.21203
[1152] Yin, J.-W.; Pan, H.; Wu, Z.-H.; Hao, P.-C., A growth study of the Richtmyer-Meshkov flow in the elastoplastic solids under explosive loading, Acta Phys Sin., 66, 074701 (2017)
[1153] Yosef-Hai, A.; Sadot, O.; Kartoon, D.; Oron, D.; Levin, L.; Sarid, E.; Elbaz, Y.; Ben-Dor, G.; Shvarts, D., Late-time growth of the Richtmyer-Meshkov instability for different Atwood numbers and different dimensionalities, Laser Part. Beams, 21, 363 (2003)
[1154] Young, R. P.; Kuranz, C. C.; Drake, R. P.; Hartigan, P., Accretion shocks in the laboratory: Design of an experiment to study star formation, High Energy Density Phys., 23, 1 (2017)
[1155] Young, Y.-N.; Ham, F. E., Surface tension in incompressible Rayleigh-Taylor mixing flow, J. Turbul., 7, 71 (2006) · Zbl 1273.76148
[1156] Young, Y.-N.; Tufo, H.; Dubey, A.; Rosner, R., On the miscible Rayleigh-Taylor instability: Two and three dimensions, J. Fluid Mech., 447, 377 (2001) · Zbl 0999.76056
[1157] Youngs, D. L., Numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Physica D, 12, 32 (1984)
[1158] Youngs, D. L., Modeling turbulent mixing by Rayleigh-Taylor instability, Physica D, 37, 270 (1989)
[1159] Youngs, D. L., Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys. Fluids A, 3, 1312 (1991)
[1160] Youngs, D. L., Experimental investigation of turbulent mixing by Rayleigh-Taylor instability, (Dannevik, W. P.; Buckingham, A. C.; Leith, C. E., Advances in Compressible Turbulent Mixing, Proceeding of the 1st International Workshop on the Physics of Compressible Turbulent Mixing (1992), Princeton Univ.), 607
[1161] Youngs, D. L., Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Laser Part. Beams, 12, 725 (1994)
[1162] Youngs, D. L., Variable acceleration Rayleigh-Taylor mixing, (Jourdan, G.; Houas, L., Proceedings of the 6th International Workshop on the Physics of Compressible Turbulent Mixing (1997), Provence University Press: Provence University Press Marseille, France), 534
[1163] Youngs, D.L., 2003. Application of MILES to Rayleigh-Taylor and Richtmeyer-Meshkov mixing, AIAA paper 2003-4102.; Youngs, D.L., 2003. Application of MILES to Rayleigh-Taylor and Richtmeyer-Meshkov mixing, AIAA paper 2003-4102.
[1164] Youngs, D. L., Effect of initial conditions on self-similar turbulent mixing, (Proceedings of the International Workshop on the Physics of Compressible Turbulent Mixing, 9 (2004)), Available online at: http://www.iwpctm.org/
[1165] Youngs, D. L., The density ratio dependence of self-similar Rayleigh-Taylor mixing, Phil. Trans. R. Soc. A, 371, 20120173 (2013) · Zbl 1353.76031
[1166] Youngs, D. L., Rayleigh-Taylor mixing: direct numerical simulation and implicit large eddy simulation, Phys. Scr., 92, 074006 (2017)
[1167] Yuan, Y.; Tu, S.; Miao, W.; Wu, J.; Wang, L.; Yin, C.; Hao, Y.; Ye, W.; Ding, Y.; Jiang, S., A new data processing technique for Rayleigh-Taylor instability growth experiments, AIP Advances, 6, 065207 (2016)
[1168] Zabusky, N. J., Vortex Paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments, Annu. Rev. Fluid Mech., 31, 495 (1999)
[1169] Zabusky, N. J.; Zeng, S. M., Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical fast/slow bubble interactions J, Fluid Mech., 362, 327 (1998) · Zbl 0935.76039
[1170] Zabusky, N.; Ray, J.; Samtaney, R. S., Vortex models for Richtmyer-Meshkov fast/slow environments: scaling laws for interface growth rates, (Young, R.; Glimm, J.; Boyton, B., Proceedings of the 5th International Workshop on Compressible Turbulent Mixing (1995), World Scientific: World Scientific Singapore) · Zbl 0925.76176
[1171] Zabusky, N. J.; Lugomer, S.; Zhang, S., Micro-fluid dynamics via laser metal surface interactions: Wave-vortex interpretation of emerging multiscale coherent structures, Fluid Dyn. Res., 36, 291 (2005) · Zbl 1153.76314
[1172] Zaitsev, S. G.; Lebo, I. G.; Rozanov, V. B.; Titov, S. N.; Chebotareva, E. I., Hydrodynamic instability of the contact zone between accelerated gases, Fluid Dyn., 26, 806 (1991)
[1173] Zaitsev, S. G.; Titov, S. N.; Chebotareva, E. I., Evolution of the continuous interface between gases of different density during the passage of a shock wave, Fluid Dyn., 29, 171 (1994)
[1174] Zaytsev, S. G.; Krivets, V. V.; Mazilin, I. M.; Titov, S. N.; Chebotareva, E. I.; Nikishin, V. V.; Tishkin, V. F.; Bouquet, S.; Haas, J.-F., Evolution of the Rayleigh-Taylor instability in the mixing zone between gases of different densities in a field of variable acceleration, Laser Part. Beams, 21, 393 (2003)
[1175] Zeldovich, Y. B.; Raizer, Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (1966), Academic: Academic New York
[1176] Zellner, M. B.; Buttler, W. T., Exploring Richtmyer-Meshkov instability phenomena and ejecta cloud physics, Appl. Phys. Lett., 93, 114102 (2008)
[1177] Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A., Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces, J. Appl. Phys., 102, 013522 (2007)
[1178] Zetina, S.; Godinez, F. A.; Zenit, R., A hydrodynamic instability is used to create aesthetically appealing patterns in painting, PLOS ONE, 10, 1 (2015)
[1179] Zhai, Z.; Si, T.; Luo, X.; Yang, J., On the evolution of spherical gas interfaces accelerated by a planar shock wave, Phys. Fluids, 23, 084104 (2011)
[1180] Zhang, Q., Validation of the chaotic mixing renormalization group fixed point, Phys. Lett. A, 151, 18 (1990)
[1181] Zhang, Q., Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing, Phys. Rev. Lett., 81, 3391 (1998)
[1182] Zhang, Q.; Guo, W., Universality of finger growth in two-dimensional Rayleigh-Taylor and Richtmyer-Meshkov instabilities with all density ratios, J. Fluid Mech., 786, 47 (2016) · Zbl 1381.76079
[1183] Zhang, Q.; Sohn, S.-I., An analytical nonlinear theory of Richtmyer-Meshkov instability, Phys. Lett. A, 212, 149 (1996) · Zbl 1073.76551
[1184] Zhang, Q.; Sohn, S.-I., Non-linear theory of unstable fluid mixing driven by shock wave, Phys. Fluids, 9, 1106 (1997) · Zbl 1185.76625
[1185] Zhang, Q.; Sohn, S.-I., Padé approximation for an interfacial fluid mixing problem, Appl. Math. Lett., 10, 121 (1997) · Zbl 0898.76042
[1186] Zhang, Q.; Sohn, S.-I., Quantitative theory of Richtmyer-Meshkov instability in three dimensions, Z. Angew. Math. Phys., 50, 1 (1999) · Zbl 0941.76030
[1187] Zhang, Q., Deng, S., Guo, W., 2016. An accurate close-form theory for the growth rate of Richtmyer-Meshkov instability in compressible fluids with all density ratios, 15th International Workshop on the Physics of Compressible Turbulent Mixing, Sydney, Australia.; Zhang, Q., Deng, S., Guo, W., 2016. An accurate close-form theory for the growth rate of Richtmyer-Meshkov instability in compressible fluids with all density ratios, 15th International Workshop on the Physics of Compressible Turbulent Mixing, Sydney, Australia.
[1188] Zhang, Q., Deng, S., Guo, W., 2017. A quantitative theory for compressible Richtmyer-Meshkov instability at all density ratios (submitted for publication).; Zhang, Q., Deng, S., Guo, W., 2017. A quantitative theory for compressible Richtmyer-Meshkov instability at all density ratios (submitted for publication).
[1189] Zhang, K.; Zhong, J. Y.; Wang, J. Q.; Pei, X. X.; Wei, H. G.; Yuan, D. W.; Yang, Z. W.; Wang, C.; Li, F.; Han, B.; Yin, C. L., Modeling the interaction of solar wind with a dipole magnetic field with Shenguang II intense lasers, High Energy Density Phys., 17, 32 (2015)
[1190] Zhang, X., Single-mode bubble evolution simulations of Rayleigh-Taylor instability with spectral element method and a viscous model, Comput. & Fluids, 88, 813 (2013) · Zbl 1391.76787
[1191] Zhang, Y. S.; He, Z. W.; Li, X. L.; Tian, B. L., The realization of non-reflecting boundaries for compressible Rayleigh-Taylor flows with variable acceleration histories, Proc. Eng., 126, 118 (2015)
[1192] Zhang, Y.-T.; Shi, J.; Shu, C.-W.; Zhou, Y., Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers, Phys. Rev. E, 68, 046709 (2003)
[1193] Zhang, Y.-T.; Shu, C.-W.; Zhou, Y., Effects of shock waves on Rayleigh-Taylor instability, Phys. Plasmas, 13, 062705 (2006)
[1194] Zhigalin, A. S.; Rousskikh, A. G.; Baksht, R. B.; Chaikovsky, S. A.; Labetskaya, N. A.; Oreshkin, V. I., Suppression of Rayleigh-Taylor instabilities in Z-pinches, Tech. Phys. Lett., 41, 554 (2015)
[1195] Zhong, J.; Li, Y.; Wang, X.; Wang, J.; Dong, Q.; Xiao, C.; Wang, S.; Liu, X.; Zhang, L.; An, L.; Wang, F., Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers, Nature Phys., 6, 984 (2010)
[1196] Zhou, Q., Temporal evolution and scaling of mixing in two-dimensional Rayleigh-Taylor turbulence, Phys. Fluids, 25, 085107 (2013)
[1197] Zhou, Q.; Huang, Y. X.; Lu, Z. M.; Liu, Y. L.; Ni, R., Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh-Taylor turbulence, J. Fluid Mech., 786, 294 (2016) · Zbl 1381.76104
[1198] Zhou, Q.; Jiang, L. F., Kinetic and thermal energy dissipation rates in two-dimensional Rayleigh-Taylor turbulence, Phys. Fluids, 28, 045109 (2016)
[1199] Zhou, Y., Eddy damping backscatter and subgrid stresses in subgrid modeling of turbulence, Phys. Rev. A, 43, 7049 (1991)
[1200] Zhou, Y., Degree of locality of energy transfer in the inertial range, Phys. Fluids A, 5, 1092 (1993)
[1201] Zhou, Y., Interacting scales and energy transfer in isotropic turbulence, Phys. Fluids A, 5, 2511 (1993) · Zbl 0798.76032
[1202] Zhou, Y., A phenomenological treatment of rotating turbulence, Phys. Fluids, 7, 2092 (1995) · Zbl 1039.76516
[1203] Zhou, Y., A scaling analysis of turbulent flows driven by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Fluids, 13, 538 (2001) · Zbl 1184.76614
[1204] Zhou, Y., Unification and extension of the concepts of similarity criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations, Phys. Plasmas, 14, 082701 (2007)
[1205] Zhou, Y., Renormalization group theory for fluid and plasma turbulence, Phys. Reports, 488, 1 (2010)
[1206] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Reports, 723-725, 1 (2017) · Zbl 1377.76017
[1207] Zhou, Y.; Matthaeus, W. H., Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence, J. Geophys. Res., 95, 14881 (1990)
[1208] Zhou, Y.; Oughton, S., Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence, Phys. Plasmas, 18, 072304 (2011)
[1209] Zhou, Y.; Speziale, C. G., Advances in the fundamental aspects of turbulence: Energy transfer, interacting scales, and self-preservation in isotropic decay, ASME Appl. Mech. Rev., 51, 267 (1998)
[1210] Zhou, Y.; Thornber, B., A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations, ASME J. Fluids Eng., 138 (2016), 071205
[1211] Zhou, Y.; Vahala, G., Reformulation of recursive-renormalization-group based subgrid modeling of turbulence, Phys. Rev. E, 47, 2503 (1993)
[1212] Zhou, Y.; Vahala, G.; Hossain, M., Renormalization-group theory for the eddy viscosity in subgrid modeling, Phys. Rev. A, 37, 2590 (1988)
[1213] Zhou, Y.; Hossain, M.; Vahala, G., A critical look at the use of filters in large eddy simulations, Phys. Lett. A, 139, 330 (1989)
[1214] Zhou, Y.; Vahala, G.; Hossain, M., Renormalized eddy viscosity and Kolmogorov’s constant in forced Navier-Stokes turbulence, Phys. Rev. A, 40, 5865 (1989)
[1215] Zhou, Y.; Yeung, P. K.; Brasseur, J. G., Scale disparity and spectral transfer in anisotropic numerical turbulence, Phys. Rev. E, 53, 1261 (1996)
[1216] Zhou, Y.; Schilling, O.; Ghosh, S., Subgrid scale and backscatter model for magnetohydrodynamic turbulence based on closure theory: Theoretical formulation, Phys. Rev. E, 66, 026309 (2002)
[1217] Zhou, Y.; Robey, H. F.; Buckingham, A. C., Onset of turbulence in accelerated high-Reynolds-number flow, Phys. Rev. E, 67, 056305 (2003)
[1218] Zhou, Y.; Remington, B. A.; Robey, H. F.; Cook, A. W.; Glendinning, S. G.; Dimits, A.; Buckingham, A. C.; Zimmerman, G. B.; Burke, E. W.; Peyser, T. A.; Cabot, W.; Eliason, D., Progress in understanding turbulent mixing induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Plasmas, 10, 1883 (2003)
[1219] Zhou, Y.; Matthaeus, W. H.; Dmitruk, P., Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasma, Rev. Modern Phys., 76, 1015 (2004)
[1220] Zhou, Y.; Buckingham, A. C.; Bataille, F.; Mathelin, L., Minimum state for high Reynolds and Péclet number turbulent flows, Phys. Lett. A, 373, 2746 (2009) · Zbl 1231.76113
[1221] Zhou, Y.; Grinstein, F. F.; Wachtor, A. J.; Haines, B. M., Estimating the effective Reynolds number in implicit large eddy simulation, Phys. Rev. E., 89, 013303 (2014)
[1222] Zhou, Y.; Cabot, W. H.; Thornber, B., Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows, Phys. Plasmas, 23, 052712 (2016)
[1223] Zingale, M.; Woosley, S. E.; Rendleman, C. A.; Day, M. S.; Bell, J. B., Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in Type Ia supernovae, Astrophys. J., 632, 1021 (2005)
[1224] Zingale, M.; Woosley, S. E.; Bell, J. B.; Day, M. S.; Rendleman, C. A., The physics of flames in type Ia supernovae, J. Phys. Conf., 16, 405 (2005)
[1225] Zou, L.-Y.; Liu, J.-H.; Liao, S.-F.; Zheng, X.-X.; Zhai, Z.-G.; Luo, X.-S., Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave, Phys. Rev. E, 95, 013107 (2017)
[1226] Zufiria, J. A., Bubble competition in Rayleigh-Taylor instability, Phys. Fluids, 31, 440 (1988)
[1227] Zufiria, J. A., Vortex-in-cell simulation of bubble competition in a Rayleigh-Taylor instability, Phys. Fluids, 31, 3199 (1988) · Zbl 0654.76095
[1228] Zweibel, E., Spinning a tangled web, Nature, 352, 755 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.