×

An adaptive local deconvolution method for implicit LES. (English) Zbl 1146.76607

Summary: The adaptive local deconvolution method (ALDM) is proposed as a new nonlinear discretization scheme designed for implicit large-eddy simulation (ILES) of turbulent flows. In ILES the truncation error of the discretization of the convective terms functions as a subgrid-scale model. Therefore, the model is implicitly contained within the discretization, and an explicit computation of model terms becomes unnecessary. The discretization is based on a solution-adaptive deconvolution operator which allows to control the truncation error. Deconvolution parameters are determined by an analysis of the spectral numerical viscosity. An automatic optimization based on an evolutionary algorithm is employed to obtain a set of parameters which results in an optimum spectral match for the numerical viscosity with theoretical predictions for isotropic turbulence. Simulations of large-scale forced and decaying three-dimensional homogeneous isotropic turbulence show an excellent agreement with theory and experimental data and demonstrate the good performance of the implicit model. As an example for transitional flows, instability and breakdown of the three-dimensional Taylor-Green vortex are considered. The implicit model correctly predicts instability growth and transition to developed turbulence. It is shown that the implicit model performs at least as well as established explicit models.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI

References:

[1] Leonard, A., Energy cascade in large eddy simulations of turbulent fluid flows, Adv. Geophys., 18A, 237-248 (1974)
[2] Aldama, A. A., Filtering Techniques for Turbulent Flow Simulation. Filtering Techniques for Turbulent Flow Simulation, Lecture Notes in Engineering, vol. 56 (1990), Springer: Springer Berlin · Zbl 0724.76002
[3] Dakhoul, V. M.; Bedford, K. W., Improved averaging method for turbulent flow simulation. I - Theoretical development and application to Burgers’ transport equation, Int. J. Numer. Meth. Fluids, 6, 49-64 (1986) · Zbl 0649.76029
[4] Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D., The temporally filtered Navier-Stokes equations: properties of the residual stress, Phys. Fluids, 15, 2127-2140 (2003) · Zbl 1186.76434
[5] C.D. Pruett, B.C. Thomas, C.E. Grosch, T.B. Gatski, A temporal approximate deconvolution model for LES, in: J.A.C. Humphrey, T.B. Gatski, J.K. Eaton, R. Friedrich, N. Kasagi, M.A. Leschziner (Eds.), Fourth International Symposium on Turbulence and Shear Flow Phenomena, Williamsburg, VA, USA, 2005, pp. 705-710.; C.D. Pruett, B.C. Thomas, C.E. Grosch, T.B. Gatski, A temporal approximate deconvolution model for LES, in: J.A.C. Humphrey, T.B. Gatski, J.K. Eaton, R. Friedrich, N. Kasagi, M.A. Leschziner (Eds.), Fourth International Symposium on Turbulence and Shear Flow Phenomena, Williamsburg, VA, USA, 2005, pp. 705-710.
[6] Domaradzki, J. A.; Adams, N. A., Direct modeling of subgrid scales of turbulence in large-eddy simulations, J. Turb., 3, 24 (2002)
[7] Sagaut, P., Large-Eddy Simulation for Incompressible Flows (2002), Springer: Springer Berlin · Zbl 1020.76001
[8] Lesieur, M., Turbulence in Fluids (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, The Netherlands · Zbl 0876.76002
[9] Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. Comput. Phys., 125, 187-206 (1996) · Zbl 0848.76043
[10] Zandonade, P. S.; Langford, J. A.; Moser, R. D., Finite-volume optimal large-eddy simulation of isotropic turbulence, Phys. Fluids, 16, 7, 2255-2271 (2004) · Zbl 1186.76599
[11] Garnier, E.; Mossi, M.; Sagaut, P.; Comte, P.; Deville, M., On the use of shock-capturing schemes for large-eddy simulation, J. Comput. Phys., 153, 273-311 (1999) · Zbl 0949.76042
[12] Grinstein, F. F.; Fureby, C., From canonical to complex flows: recent progress on monotonically integrated LES, Comp. Sci. Eng., 6, 36-49 (2004)
[13] Adams, N. A.; Hickel, S.; Franz, S., Implicit subgrid-scale modeling by adaptive deconvolution, J. Comput. Phys., 200, 412-431 (2004) · Zbl 1115.76340
[14] Fureby, C.; Tabor, G.; Weller, H. G.; Gosman, A. D., A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys. Fluids, 9, 1416-1429 (1997) · Zbl 1185.76663
[15] Margolin, L. G.; Rider, W. J., A rationale for implicit turbulence modeling, Int. J. Numer. Meth. Fluids, 39, 821-841 (2002) · Zbl 1014.76032
[16] Vichnevetsky, R.; Bowles, J. B., Fourier Analysis of Numerical Approximations of Hyperbolic Equations (1982), SIAM: SIAM Philadelphia · Zbl 0495.65041
[17] Chollet, J.-P., Two-point closures as a subgrid-scale modeling tool for large-eddy simulations, (Durst, F.; Launder, B. E., Turbulent Shear Flows IV (1984), Springer: Springer Heidelberg), 62-72 · Zbl 0567.76054
[18] Domaradzki, J. A.; Xiao, Z.; Smolarkiewicz, P. K., Effective eddy viscosities in implicit large eddy simulations of turbulent flows, Phys. Fluids, 15, 3890-3893 (2003) · Zbl 1186.76146
[19] Schumann, U., Subgrid scale model for finite-difference simulations of turbulence in plane channels and annuli, J. Comput. Phys., 18, 376-404 (1975) · Zbl 0403.76049
[20] Langford, J. A.; Moser, R. D., Breakdown of continuity in large-eddy simulation, Phys. Fluids, 13, 1524-1527 (2001) · Zbl 1184.76309
[21] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303 (1987) · Zbl 0652.65067
[22] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Tech. Rep. 97-65, ICASE, NASA Langley Research Center, Hampton, VA, 1997.; C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Tech. Rep. 97-65, ICASE, NASA Langley Research Center, Hampton, VA, 1997.
[23] Liu, S. W.; Meneveau, C.; Katz, J., On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet, J. Fluid Mech., 275, 83-119 (1994)
[24] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[25] LeVeque, R. J., Numerical Methods for Conservation Laws (1992), Birkhäuser: Birkhäuser Basel, Switzerland · Zbl 0847.65053
[26] Frisch, U., Turbulence (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0727.76064
[27] Fureby, C.; Grinstein, F. F., Large eddy simulation of high-Reynolds-number free and wall-bounded flows, J. Comput. Phys., 181, 68-97 (2002) · Zbl 1051.76579
[28] Margolin, L. G.; Rider, W. J., The design and construction of implicit LES models, Int. J. Numer. Meth. Fluids, 47, 1173-1179 (2005) · Zbl 1064.76060
[29] Batchelor, G. K., The Theory of Homogenous Turbulence (1953), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0053.14404
[30] Pope, S. B., Turbulent Flows (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0802.76033
[31] Chollet, J.-P.; Lesieur, M., Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., 38, 2747-2757 (1981)
[32] Heisenberg, W., Zur statistischen Theorie der Turbulenz, Z. Phys., 124, 628-657 (1946) · Zbl 0034.26903
[33] S. Hickel, S. Franz, N. Adams, P. Koumoutsakos, Optimization of an implicit subgrid-scale model for LES, in: Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 2004.; S. Hickel, S. Franz, N. Adams, P. Koumoutsakos, Optimization of an implicit subgrid-scale model for LES, in: Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 2004.
[34] Piomelli, U.; Cabot, W. H.; Moin, P.; Lee, S., Subgrid-scale backscatter in turbulent and transitional flows, Phys. Fluids, 3, 1766-1771 (1991) · Zbl 0825.76335
[35] Leslie, D. C.; Quarini, G. L., The application of turbulence theory to the formulation of subgrid modelling procedures, J. Fluid Mech., 91, 65-91 (1979) · Zbl 0411.76045
[36] Domaradzki, J. A.; Saiki, E. M., Backscatter models for large-eddy simulation, Theor. Comput. Fluid Dyn., 9, 75-83 (1997) · Zbl 0907.76061
[37] Carati, D.; Ghosal, S.; Moin, P., On the representation of backscatter in dynamic localization models, Phys. Fluids, 7, 606-616 (1995) · Zbl 1032.76559
[38] Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9, 6, 1073-1084 (1988) · Zbl 0662.65081
[39] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85 (1998) · Zbl 0897.65058
[40] Titarev, V. A.; Toro, E. F., Finite-volume WENO schemes for three-dimensional conservation laws, J. Comput. Phys., 201, 238-260 (2004) · Zbl 1059.65078
[41] Métais, O.; Lesieur, M., Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid Mech., 239, 157-194 (1992) · Zbl 0825.76272
[42] Domaradzki, J. A.; Metcalfe, R. W.; Rogallo, R. S.; Riley, J. J., Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations, Phys. Rev. Lett., 58, 547-550 (1987)
[43] McComb, W. D., The Physics of Fluid Turbulence (1990), Clarendon Press: Clarendon Press Oxford · Zbl 0748.76005
[44] Yang, X.; Domaradzki, J. A., Large eddy simulations of decaying rotating turbulence, Phys. Fluids, 16, 11, 4088-4104 (2004) · Zbl 1187.76576
[45] P.K. Yeung, Y. Zhou, On the universality of the Kolmogorov constant in numerical simulations of turbulence, Tech. Rep. 97-64, ICASE, NASA Langley Research Center, Hampton, VA, 1997.; P.K. Yeung, Y. Zhou, On the universality of the Kolmogorov constant in numerical simulations of turbulence, Tech. Rep. 97-64, ICASE, NASA Langley Research Center, Hampton, VA, 1997.
[46] Comte-Bellot, G.; Corrsin, S., Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated ‘isotropic’ turbulence, J. Fluid Mech., 48, 273-337 (1971)
[47] A. Misra, T.S. Lund, Evaluation of a vortex-based subgrid stress model using DNS databases, in: CTR Proceedings of 1996 Summer Program, Center for Turbulence Research, Stanford University and NASA Ames Research Center, Stanford, CA, 1996, pp. 359-368.; A. Misra, T.S. Lund, Evaluation of a vortex-based subgrid stress model using DNS databases, in: CTR Proceedings of 1996 Summer Program, Center for Turbulence Research, Stanford University and NASA Ames Research Center, Stanford, CA, 1996, pp. 359-368.
[48] Ghosal, S.; Lund, T. S.; Moin, P.; Akselvoll, K., A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech., 286, 229-255 (1995) · Zbl 0837.76032
[49] Smagorinsky, J., General circulation experiments with the primitive equations, Mon. Weath. Rev., 93, 99-164 (1963)
[50] D.K. Lilly, On the application of the eddy viscosity concept in the inertial subrange of turbulence, NCAR MS 123, National Center for Atmospheric Research, Boulder, CO, 1966.; D.K. Lilly, On the application of the eddy viscosity concept in the inertial subrange of turbulence, NCAR MS 123, National Center for Atmospheric Research, Boulder, CO, 1966.
[51] D.K. Lilly, The representation of small-scale turbulence in numerical simulation experiments, in: H.H. Goldstein (Ed.), Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM, 1967, pp. 195-201.; D.K. Lilly, The representation of small-scale turbulence in numerical simulation experiments, in: H.H. Goldstein (Ed.), Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM, 1967, pp. 195-201.
[52] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760-1765 (1991) · Zbl 0825.76334
[53] Lilly, D. K., A proposed modification of the Germano subgrid-scale closure model, Phys. Fluids A, 4, 633-635 (1992)
[54] AGARD, A Selection of Test Cases for the Validation of Large-Eddy Simulations of Turbulent Flows, Technical Report AGARD-AR-345, NATO, 1998.; AGARD, A Selection of Test Cases for the Validation of Large-Eddy Simulations of Turbulent Flows, Technical Report AGARD-AR-345, NATO, 1998.
[55] Kang, H. S.; Chester, S.; Meneveau, C., Decaying turbulence in an active-grid-generated flow and large-eddy simulation, J. Fluid Mech., 480, 129-160 (2003) · Zbl 1063.76507
[56] Lesieur, M.; Métais, O., New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid. Mech., 28, 45-82 (1996)
[57] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94 (1995) · Zbl 0847.76007
[58] Brachet, M.; Meiron, D.; Orszag, S.; Nickel, B.; Morf, R.; Frisch, U., Small-scale structure of the Taylor-Green vortex, J. Fluid Mech., 130, 411-452 (1983) · Zbl 0517.76033
[59] Brachet, M.; Meneguzzi, M.; Vincent, A.; Politano, H.; Sulem, P.-L., Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flow, Phys. Fluids, 4, 2845-2854 (1992) · Zbl 0775.76026
[60] Back, T.; Fogel, D. B.; Michalewicz, Z., Handbook of Evolutionary Computation (1997), University Oxford Press: University Oxford Press Oxford · Zbl 0883.68001
[61] Beasley, D.; Bull, D. R.; Martin, R. R., An overview of genetic algortihms: Part 1, fundamentals, Univ. Comput., 15, 58-69 (1993)
[62] Beasley, D.; Bull, D. R.; Martin, R. R., An overview of genetic algortihms: Part 2, research topics, Univ. Comput., 15, 170-181 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.