×

Shape dependence of renormalized holographic entanglement entropy. (English) Zbl 1454.83109

Summary: We study the holographic entanglement entropy of deformed entangling regions in three-dimensional CFTs dual to Einstein-AdS gravity, using a renormalization scheme based on the addition of extrinsic counterterms. In this prescription, when even-dimensional manifolds are considered, the universal contribution to the entanglement entropy is identified as the renormalized volume of the Ryu-Takayanagi hypersurface, which is written as the sum of a topological and a curvature term. It is shown that the change in the renormalized entanglement entropy due to the deformation of the entangling surface is encoded purely in the curvature contribution. In turn, as the topological part is given by the Euler characteristic of the Ryu-Takayanagi surface, it remains shape independent. Exploiting the covariant character of the extrinsic counterterms, we apply the renormalization scheme for the case of deformed entangling regions in \(\mathrm{ AdS}_4/ \mathrm{CFT}_3\), recovering the results found in the literature. Finally, we provide a derivation of the relation between renormalized entanglement entropy and Willmore energy. The presence of a lower bound of the latter makes manifest the relation between the AdS curvature of the Ryu-Takayanagi surface and the strong subadditivity property.

MSC:

83E05 Geometrodynamics and the holographic principle
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · Zbl 1228.83110
[2] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.80 (2008) 517 [quant-ph/0703044] [INSPIRE]. · Zbl 1205.81009
[3] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A42 (2009) 504005 [arXiv:0905.4013] [INSPIRE]. · Zbl 1179.81026
[4] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A42 (2009) 504007 [arXiv:0905.2562] [INSPIRE]. · Zbl 1186.81017
[5] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, vol. 931, Springer (2017) [DOI] [arXiv:1609.01287] [INSPIRE]. · Zbl 1371.81011
[6] T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys.90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].
[7] E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys.90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].
[8] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[9] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE]. · Zbl 1342.83185
[10] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. · Zbl 1359.81171
[11] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE]. · Zbl 1338.83057
[12] C. Arias, F. Diaz and P. Sundell, de Sitter Space and Entanglement, Class. Quant. Grav.37 (2020) 015009 [arXiv:1901.04554] [INSPIRE]. · Zbl 1478.83022
[13] X. Dong, The Gravity Dual of Renyi Entropy, Nature Commun.7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].
[14] T. Grover, A.M. Turner and A. Vishwanath, Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions, Phys. Rev. B84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].
[15] H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, JHEP04 (2013) 162 [arXiv:1202.2070] [INSPIRE]. · Zbl 1342.81346
[16] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[17] S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B665 (2008) 305 [arXiv:0802.3117] [INSPIRE]. · Zbl 1328.81209
[18] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073
[19] J.S. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [INSPIRE].
[20] I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP10 (2011) 038 [arXiv:1105.4598] [INSPIRE]. · Zbl 1303.81127
[21] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP06 (2011) 102 [arXiv:1103.1181] [INSPIRE]. · Zbl 1298.81304
[22] R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
[23] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP01 (2011) 125 [arXiv:1011.5819] [INSPIRE]. · Zbl 1214.83036
[24] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D85 (2012) 125016 [arXiv:1202.5650] [INSPIRE]. · Zbl 1397.81034
[25] S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP03 (2015) 117 [arXiv:1409.1937] [INSPIRE]. · Zbl 1388.81383
[26] L. Fei, S. Giombi and I.R. Klebanov, Critical O(N ) models in 6 − 𝜖 dimensions, Phys. Rev. D90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].
[27] D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP05 (2014) 032 [arXiv:1207.4359] [INSPIRE]. · Zbl 1333.81370
[28] J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B231 (1984) 269 [INSPIRE].
[29] K.G. Wilson and J.B. Kogut, The Renormalization group and the 𝜖-expansion, Phys. Rept.12 (1974) 75 [INSPIRE].
[30] A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi entropies, Phys. Rev. D91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].
[31] A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Renyi entropy, JHEP01 (2015) 080 [arXiv:1407.8171] [INSPIRE]. · Zbl 1388.81058
[32] P. Fonda, D. Seminara and E. Tonni, On shape dependence of holographic entanglement entropy in AdS_4/CFT_3 , JHEP12 (2015) 037 [arXiv:1510.03664] [INSPIRE]. · Zbl 1388.83443
[33] H. Casini and M. Huerta, Universal terms for the entanglement entropy in 2 + 1 dimensions, Nucl. Phys. B764 (2007) 183 [hep-th/0606256] [INSPIRE]. · Zbl 1116.81008
[34] T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP02 (2007) 042 [hep-th/0608213] [INSPIRE].
[35] I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On Shape Dependence and RG Flow of Entanglement Entropy, JHEP07 (2012) 001 [arXiv:1204.4160] [INSPIRE].
[36] R.C. Myers and A. Singh, Entanglement Entropy for Singular Surfaces, JHEP09 (2012) 013 [arXiv:1206.5225] [INSPIRE].
[37] A.B. Kallin, E.M. Stoudenmire, P. Fendley, R.R.P. Singh and R.G. Melko, Corner contribution to the entanglement entropy of an O(3) quantum critical point in 2 + 1 dimensions, J. Stat. Mech.1406 (2014) P06009 [arXiv:1401.3504] [INSPIRE]. · Zbl 1456.82054
[38] P. Bueno, H. Casini and W. Witczak-Krempa, Generalizing the entanglement entropy of singular regions in conformal field theories, JHEP08 (2019) 069 [arXiv:1904.11495] [INSPIRE]. · Zbl 1421.81110
[39] M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D91 (2015) 045038 [arXiv:1411.7011] [INSPIRE].
[40] V. Rosenhaus and M. Smolkin, Entanglement Entropy: A Perturbative Calculation, JHEP12 (2014) 179 [arXiv:1403.3733] [INSPIRE]. · Zbl 1333.81044
[41] P. Bueno and R.C. Myers, Universal entanglement for higher dimensional cones, JHEP12 (2015) 168 [arXiv:1508.00587] [INSPIRE]. · Zbl 1388.83193
[42] L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP07 (2016) 076 [arXiv:1511.06713] [INSPIRE]. · Zbl 1390.81486
[43] T. Faulkner, R.G. Leigh and O. Parrikar, Shape Dependence of Entanglement Entropy in Conformal Field Theories, JHEP04 (2016) 088 [arXiv:1511.05179] [INSPIRE].
[44] L. Bianchi, S. Chapman, X. Dong, D.A. Galante, M. Meineri and R.C. Myers, Shape dependence of holographic Rényi entropy in general dimensions, JHEP11 (2016) 180 [arXiv:1607.07418] [INSPIRE]. · Zbl 1390.81379
[45] X. Dong, Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories, Phys. Rev. Lett.116 (2016) 251602 [arXiv:1602.08493] [INSPIRE].
[46] A. Ghosh and R. Mishra, Inhomogeneous Jacobi equation for minimal surfaces and perturbative change in holographic entanglement entropy, Phys. Rev. D97 (2018) 086012 [arXiv:1710.02088] [INSPIRE].
[47] D. Carmi, On the Shape Dependence of Entanglement Entropy, JHEP12 (2015) 043 [arXiv:1506.07528] [INSPIRE]. · Zbl 1388.83201
[48] D. Jang, Y. Kim, O.-K. Kwon and D.D. Tolla, Renormalized Holographic Subregion Complexity under Relevant Perturbations, JHEP07 (2020) 137 [arXiv:2001.10937] [INSPIRE]. · Zbl 1451.83082
[49] G. Anastasiou, I.J. Araya and R. Olea, Topological terms, AdS_2ngravity and renormalized Entanglement Entropy of holographic CFTs, Phys. Rev. D97 (2018) 106015 [arXiv:1803.04990] [INSPIRE]. · Zbl 1427.83016
[50] M. Babich and A. Bobenko, Willmore tori with umbilic lines and minimal surfaces in hyperbolic space, SFB-288-15 (1992) [INSPIRE]. · Zbl 0820.53005
[51] S. Alexakis and R. Mazzeo, Renormalized area and properly embedded minimal surfaces in hyperbolic 3-manifolds, Commun. Math. Phys.297 (2010) 621 [INSPIRE]. · Zbl 1193.53131
[52] F.C. Marques and A. Neves, The willmore conjecture, Jahresber. Dtsch. Math. Ver.116 (2014) 201 [arXiv:1409.7664]. · Zbl 1306.53005
[53] T. Willmore, Riemannian Geometry, Oxford science publications, Clarendon Press (1996).
[54] P. Djondjorov et al., Willmore Energy and Willmore Conjecture, CRC Press (2017).
[55] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch. C28 (1973) 693.
[56] N.J. Lott and D. Pullin, Method for fairing b-spline surfaces, Comput. Aided Des.20 (1988) 597. · Zbl 0693.65006
[57] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez and B. Ĺevy, Polygon mesh processing, AK Peters/CRC Press (2010).
[58] G. Anastasiou, I.J. Araya and R. Olea, Renormalization of Entanglement Entropy from topological terms, Phys. Rev. D97 (2018) 106011 [arXiv:1712.09099] [INSPIRE].
[59] G. Anastasiou, I.J. Araya, C. Arias and R. Olea, Einstein-AdS action, renormalized volume/area and holographic Rényi entropies, JHEP08 (2018) 136 [arXiv:1806.10708] [INSPIRE]. · Zbl 1396.83004
[60] R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes, JHEP06 (2005) 023 [hep-th/0504233] [INSPIRE].
[61] R. Olea, Regularization of odd-dimensional AdS gravity: Kounterterms, JHEP04 (2007) 073 [hep-th/0610230] [INSPIRE].
[62] O. Mišković, R. Olea and M. Tsoukalas, Renormalized AdS action and Critical Gravity, JHEP08 (2014) 108 [arXiv:1404.5993] [INSPIRE]. · Zbl 1333.83123
[63] O. Mišković and R. Olea, Topological regularization and self-duality in four-dimensional anti-de Sitter gravity, Phys. Rev. D79 (2009) 124020 [arXiv:0902.2082] [INSPIRE].
[64] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D60 (1999) 104001 [hep-th/9903238] [INSPIRE].
[65] P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat space-times, Nucl. Phys. B563 (1999) 259 [hep-th/9906127] [INSPIRE]. · Zbl 0953.83040
[66] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043
[67] V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [INSPIRE]. · Zbl 0946.83013
[68] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083
[69] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys.8 (2005) 73 [hep-th/0404176] [INSPIRE]. · Zbl 1081.81085
[70] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP08 (2005) 004 [hep-th/0505190] [INSPIRE]. · Zbl 1081.81085
[71] G. Anastasiou, I.J. Araya, A. Guijosa and R. Olea, Renormalized AdS gravity and holographic entanglement entropy of even-dimensional CFTs, JHEP10 (2019) 221 [arXiv:1908.11447] [INSPIRE]. · Zbl 1427.83016
[72] D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D52 (1995) 2133 [hep-th/9501127] [INSPIRE].
[73] R.B. Mann and S.N. Solodukhin, Conical geometry and quantum entropy of a charged Kerr black hole, Phys. Rev. D54 (1996) 3932 [hep-th/9604118] [INSPIRE].
[74] F. Dahia and C. Romero, Conical space-times: A Distribution theory approach, Mod. Phys. Lett. A14 (1999) 1879 [gr-qc/9801109] [INSPIRE].
[75] M. Atiyah and C. Lebrun, Curvature, cones and characteristic numbers, Math. Proc. Cambridge Phil. Soc.155 (2013) 13. · Zbl 1273.53041
[76] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional Geometry of Squashed Cones, Phys. Rev. D88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].
[77] A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress tensor, Class. Quant. Grav.30 (2013) 235032 [arXiv:1303.1884] [INSPIRE]. · Zbl 1284.83018
[78] A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher derivative gravity theories, JHEP10 (2014) 130 [arXiv:1405.3511] [INSPIRE]. · Zbl 1333.83153
[79] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
[80] V.E. Hubeny and M. Rangamani, Causal Holographic Information, JHEP06 (2012) 114 [arXiv:1204.1698] [INSPIRE]. · Zbl 1397.81422
[81] I. Bakas and G. Pastras, Entanglement entropy and duality in AdS_4 , Nucl. Phys. B896 (2015) 440 [arXiv:1503.00627] [INSPIRE]. · Zbl 1331.81220
[82] V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP07 (2012) 093 [arXiv:1203.1044] [INSPIRE]. · Zbl 1397.83155
[83] M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP05 (2013) 080 [arXiv:1302.5703] [INSPIRE]. · Zbl 1342.83111
[84] M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, Phys. Rev. D88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].
[85] J. Bhattacharya, V.E. Hubeny, M. Rangamani and T. Takayanagi, Entanglement density and gravitational thermodynamics, Phys. Rev. D91 (2015) 106009 [arXiv:1412.5472] [INSPIRE].
[86] W. Witczak-Krempa, Entanglement susceptibilities and universal geometric entanglement entropy, Phys. Rev. B99 (2019) 075138 [arXiv:1810.07209] [INSPIRE].
[87] S. Fischetti and T. Wiseman, A Bound on Holographic Entanglement Entropy from Inverse Mean Curvature Flow, Class. Quant. Grav.34 (2017) 125005 [arXiv:1612.04373] [INSPIRE]. · Zbl 1367.83014
[88] C. Isenberg, The science of soap films and soap bubbles, Tieto Cleveton, U.K. (1978). · Zbl 0447.76001
[89] R.C. Reilly, Mean curvature, the laplacian, and soap bubbles, Am. Math. Mon.89 (1982) 180. · Zbl 0505.53029
[90] H. Hopf, Differential geometry in the large: seminar lectures New York University 1946 and Stanford University 1956, vol. 1000, Springer (2003) [DOI]. · Zbl 0669.53001
[91] F.C. Marques and A. Neves, Min-max theory and the willmore conjecture, Annals Math.179 (2014) 683 [arXiv:1202.6036]. · Zbl 1297.49079
[92] A.F. Astaneh, G. Gibbons and S.N. Solodukhin, What surface maximizes entanglement entropy?, Phys. Rev. D90 (2014) 085021 [arXiv:1407.4719] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.