×

Towards a derivation of holographic entanglement entropy. (English) Zbl 1296.81073

Summary: We provide a derivation of holographic entanglement entropy for spherical entangling surfaces. Our construction relies on conformally mapping the boundary CFT to a hyperbolic geometry and observing that the vacuum state is mapped to a thermal state in the latter geometry. Hence the conformal transformation maps the entanglement entropy to the thermodynamic entropy of this thermal state. The AdS/CFT dictionary allows us to calculate this thermodynamic entropy as the horizon entropy of a certain topological black hole. In even dimensions, we also demonstrate that the universal contribution to the entanglement entropy is given by \(A\)-type trace anomaly for any CFT, without reference to holography.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations
94A17 Measures of information, entropy
82B30 Statistical thermodynamics
83C57 Black holes
83F05 Relativistic cosmology

References:

[1] M. Levin and X.G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett.96 (2006) 110405 [cond-mat/0510613] [SPIRES]. · doi:10.1103/PhysRevLett.96.110405
[2] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett.96 (2006) 110404 [hep-th/0510092] [SPIRES]. · doi:10.1103/PhysRevLett.96.110404
[3] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES]. · Zbl 1082.82002
[4] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: A non-technical introduction, Int. J. Quant. Inf.4 (2006) 429 [quant-ph/0505193] [SPIRES]. · Zbl 1097.81014 · doi:10.1142/S021974990600192X
[5] B. Hsu, M. Mulligan, E. Fradkin and E.-A. Kim, Universal entanglement entropy in 2D conformal quantum critical points, arXiv:0812.0203 [SPIRES].
[6] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [SPIRES]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[7] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [SPIRES]. · doi:10.1088/1126-6708/2006/08/045
[8] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys.B 796 (2008) 274 [arXiv:0709. 2140] [SPIRES]. · Zbl 1219.81214 · doi:10.1016/j.nuclphysb.2007.12.017
[9] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [SPIRES]. · Zbl 1359.81171
[10] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.42 (2010) 2323 [arXiv:1005.3035] [SPIRES]. · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[11] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev.D 82 (2010) 126010 [arXiv:1006.0047] [SPIRES].
[12] D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP09 (2006) 018 [hep-th/0606184] [SPIRES]. · doi:10.1088/1126-6708/2006/09/018
[13] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys.A 42 (2009) 504008 [arXiv:0905. 0932] [SPIRES]. · Zbl 1179.81138
[14] L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP04 (2011) 025 [arXiv:1101.5813] [SPIRES]. · doi:10.1007/JHEP04(2011)025
[15] C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett.B 333 (1994) 55 [hep-th/9401072] [SPIRES].
[16] R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev.D 82 (2010) 046006 [arXiv:1006.1263] [SPIRES].
[17] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP01 (2011) 125 [arXiv:1011.5819] [SPIRES]. · Zbl 1214.83036 · doi:10.1007/JHEP01(2011)125
[18] H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett.B 694 (2010) 167 [arXiv:1007.1813] [SPIRES].
[19] P. Candelas and J.S. Dowker, Field theories on conformally related space-times: some global considerations, Phys. Rev.D 19 (1979) 2902 [SPIRES].
[20] S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett.B 665 (2008) 305 [arXiv:0802.3117] [SPIRES]. · Zbl 1328.81209
[21] M.J. Duff, Observations on conformal anomalies, Nucl. Phys.B 125 (1977) 334 [SPIRES]. · doi:10.1016/0550-3213(77)90410-2
[22] M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav.11 (1994) 1387 [hep-th/9308075] [SPIRES]. · Zbl 0808.53063 · doi:10.1088/0264-9381/11/6/004
[23] S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett.B 309 (1993) 279 [hep-th/9302047] [SPIRES].
[24] J.S. Dowker, Entanglement entropy for even spheres, arXiv:1009.3854 [SPIRES].
[25] J.S. Dowker, Hyperspherical entanglement entropy, J. Phys.A 43 (2010) 445402 [arXiv:1007.3865] [SPIRES]. · Zbl 1209.81030
[26] S.N. Solodukhin, Entanglement entropy of round spheres, Phys. Lett.B 693 (2010) 605 [arXiv:1008.4314] [SPIRES].
[27] J.S. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [SPIRES].
[28] R. Haag, Local quantum physics: fields, particles, algebras, Springer, U.S.A. (1992) [SPIRES]. · Zbl 0777.46037
[29] H. Li and F.D.M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum Hall effect states, Phys. Rev. Lett.101 (2008) 010504 [arXiv:0805.0332]. · doi:10.1103/PhysRevLett.101.010504
[30] P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev.A 78 (2008) 032329.
[31] A.M. Turner, F. Pollmann and E. Berg, Topological phases of one-dimensional fermions: an entanglement point of view, Phys. Rev.B 83 (2011) 075102 [arXiv:1008.4346].
[32] L. Fidkowski, Entanglement spectrum of topological insulators and superconductors, Phys. Rev. Lett.104 (2010) 130502 [arXiv:0909.2654]. · doi:10.1103/PhysRevLett.104.130502
[33] H. Yao and X.-L. Qi, Entanglement entropy and entanglement spectrum of the Kitaev model, Phys. Rev. Lett.105 (2010) 080501 [arXiv:1001.1165]. · doi:10.1103/PhysRevLett.105.080501
[34] J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys.17 (1976) 303 [SPIRES]. · doi:10.1063/1.522898
[35] J.J. Bisognano and E.H. Wichmann, On the duality condition for a hermitian scalar field, J. Math. Phys.16 (1975) 985 [SPIRES]. · Zbl 0316.46062 · doi:10.1063/1.522605
[36] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [SPIRES].
[37] P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory, Commun. Math. Phys.84 (1982) 71 [SPIRES]. · Zbl 0491.46060 · doi:10.1007/BF01208372
[38] H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP03 (2009) 048 [arXiv:0812.1773] [SPIRES]. · doi:10.1088/1126-6708/2009/03/048
[39] R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero-energy states, JHEP06 (1999) 036 [hep-th/9906040] [SPIRES]. · Zbl 0951.83021 · doi:10.1088/1126-6708/1999/06/036
[40] S. Aminneborg, I. Bengtsson, S. Holst and P. Peldan, Making Anti-de Sitter black holes, Class. Quant. Grav.13 (1996) 2707 [gr-qc/9604005] [SPIRES]. · Zbl 0862.53065 · doi:10.1088/0264-9381/13/10/010
[41] D.R. Brill, J. Louko and P. Peldan, Thermodynamics of (3 + 1)-dimensional black holes with toroidal or higher genus horizons, Phys. Rev.D 56 (1997) 3600 [gr-qc/9705012] [SPIRES].
[42] L. Vanzo, Black holes with unusual topology, Phys. Rev.D 56 (1997) 6475 [gr-qc/9705004] [SPIRES].
[43] R.B. Mann, Pair production of topological Anti-de Sitter black holes, Class. Quant. Grav.14 (1997) L109 [gr-qc/9607071] [SPIRES]. · Zbl 0873.53073 · doi:10.1088/0264-9381/14/5/007
[44] D. Birmingham, Topological black holes in Anti-de Sitter space, Class. Quant. Grav.16 (1999) 1197 [hep-th/9808032] [SPIRES]. · Zbl 0933.83025 · doi:10.1088/0264-9381/16/4/009
[45] R. Emparan, AdS membranes wrapped on surfaces of arbitrary genus, Phys. Lett.B 432 (1998) 74 [hep-th/9804031] [SPIRES].
[46] D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys.B 291 (1987) 41 [SPIRES]. · doi:10.1016/0550-3213(87)90465-2
[47] C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys.B 262 (1985) 593 [SPIRES]. · doi:10.1016/0550-3213(85)90506-1
[48] R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP08 (2010) 035 [arXiv:1004. 2055] [SPIRES]. · Zbl 1291.83156 · doi:10.1007/JHEP08(2010)035
[49] A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP03 (2010) 111 [arXiv:0911.4257] [SPIRES]. · Zbl 1271.81120 · doi:10.1007/JHEP03(2010)111
[50] J. de Boer, M. Kulaxizi and A. Parnachev, AdS7/CFT6, Gauss-Bonnet gravity and viscosity bound, JHEP03 (2010) 087 [arXiv:0910.5347] [SPIRES]. · Zbl 1271.83048 · doi:10.1007/JHEP03(2010)087
[51] X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP04 (2010) 007 [arXiv:0911.3160] [SPIRES]. · Zbl 1272.83044 · doi:10.1007/JHEP04(2010)007
[52] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock gravities and black holes, JHEP06 (2010) 008 [arXiv:0912.1877] [SPIRES]. · Zbl 1290.81112 · doi:10.1007/JHEP06(2010)008
[53] X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP06 (2010) 099 [arXiv:0912.1944] [SPIRES]. · Zbl 1288.83018 · doi:10.1007/JHEP06(2010)099
[54] X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate of the viscosity bound, arXiv:1010.1682 [SPIRES]. · Zbl 1296.83009
[55] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys.12 (1971) 498 [SPIRES]. · Zbl 0213.48801 · doi:10.1063/1.1665613
[56] D. Lovelock, Divergence-free tensorial concomitants, Aequat. Math.4 (1970) 127. · Zbl 0193.50602 · doi:10.1007/BF01817753
[57] R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP08 (2010) 067 [arXiv:1003.5357] [SPIRES]. · Zbl 1291.83113 · doi:10.1007/JHEP08(2010)067
[58] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) 3427 [gr-qc/9307038] [SPIRES]. · Zbl 0942.83512
[59] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev.D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].
[60] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [SPIRES].
[61] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982), p. 340. · Zbl 0476.53017
[62] R. Laflamme, Geometry and thermofields, Nucl. Phys.B 324 (1989) 233 [SPIRES]. · doi:10.1016/0550-3213(89)90191-0
[63] D.V. Fursaev and G. Miele, Finite temperature scalar field theory in static de Sitter space, Phys. Rev.D 49 (1994) 987 [hep-th/9302078] [SPIRES].
[64] D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [SPIRES]. · Zbl 1042.81093 · doi:10.1016/j.physrep.2003.09.002
[65] L.S. Brown and J.P. Cassidy, Stress tensors and their trace anomalies in conformally flat space-times, Phys. Rev.D 16 (1977) 1712 [SPIRES].
[66] T.S. Bunch and P.C.W. Davies, Quantum field theory in de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond.A 360 (1978) 117 [SPIRES].
[67] L.Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Renyi entropy in higher dimensions, in preparation. · Zbl 1306.81159
[68] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [SPIRES]. · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[69] M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys.48 (2000) 125 [hep-th/9812032] [SPIRES]. · Zbl 0976.81093 · doi:10.1002/(SICI)1521-3978(20001)48:1/3<125::AID-PROP125>3.0.CO;2-B
[70] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, arXiv:1101.5781 [SPIRES]. · Zbl 1298.81265
[71] J.T. Liu, W. Sabra and Z. Zhao, Holographic c-theorems and higher derivative gravity, arXiv:1012.3382 [SPIRES].
[72] A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav.28 (2011) 085002 [arXiv:1008.4315] [SPIRES]. · Zbl 1216.83046 · doi:10.1088/0264-9381/28/8/085002
[73] M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, arXiv:1101.5993 [SPIRES]. · Zbl 1296.81111
[74] L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [SPIRES].
[75] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [SPIRES]. · Zbl 0990.81564 · doi:10.1016/0550-3213(94)90402-2
[76] A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys.B 801 (2008) 1 [arXiv:0802.1017] [SPIRES]. · Zbl 1189.83036 · doi:10.1016/j.nuclphysb.2008.04.015
[77] H. Casini, Mutual information challenges entropy bounds, Class. Quant. Grav.24 (2007) 1293 [gr-qc/0609126] [SPIRES]. · Zbl 1110.83314 · doi:10.1088/0264-9381/24/5/013
[78] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys.A 42 (2009) 504007 [arXiv:0905.2562] [SPIRES]. · Zbl 1186.81017
[79] B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [SPIRES].
[80] D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, arXiv:1012.3210 [SPIRES]. · Zbl 1348.81420
[81] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, arXiv:1103.1181 [SPIRES]. · Zbl 1298.81304
[82] K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys.B 667 (2003) 183 [hep-th/0304128] [SPIRES]. · Zbl 1059.81602 · doi:10.1016/S0550-3213(03)00459-0
[83] E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4D a-theorem, via a-maximization along RG flows, Nucl. Phys.B 702 (2004) 131 [hep-th/0408156] [SPIRES]. · Zbl 1198.81148 · doi:10.1016/j.nuclphysb.2004.09.016
[84] D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys.B 277 (1986) 1 [SPIRES]. · doi:10.1016/0550-3213(86)90429-3
[85] M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four loop β-function for the N = 1 and N = 2 supersymmetric nonlinear σ-model in two-dimensions, Phys. Lett.B 173 (1986) 423 [SPIRES].
[86] M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP10 (2008) 047 [arXiv:0804.0763] [SPIRES]. · Zbl 1245.81215 · doi:10.1088/1126-6708/2008/10/047
[87] A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett.B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].
[88] M.B. Green and M. Gutperle, Effects of D-instantons, Nucl. Phys.B 498 (1997) 195 [hep-th/9701093] [SPIRES]. · Zbl 0979.81566 · doi:10.1016/S0550-3213(97)00269-1
[89] R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev.D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].
[90] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Universality of the operator product expansions of SCFT(4), Phys. Lett.B 394 (1997) 329 [hep-th/9608125] [SPIRES].
[91] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys.B 526 (1998) 543 [hep-th/9708042] [SPIRES]. · Zbl 1031.81565 · doi:10.1016/S0550-3213(98)00278-8
[92] R. Lohmayer, H. Neuberger, A. Schwimmer and S. Theisen, Numerical determination of entanglement entropy for a sphere, Phys. Lett.B 685 (2010) 222 [arXiv:0911.4283] [SPIRES].
[93] A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP03 (2009) 084 [arXiv:0812.2521] [SPIRES]. · doi:10.1088/1126-6708/2009/03/084
[94] Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP01 (2009) 044 [arXiv:0712.0743] [SPIRES]. · Zbl 1243.81159 · doi:10.1088/1126-6708/2009/01/044
[95] C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP05 (1999) 011 [hep-th/9903210] [SPIRES]. · Zbl 1056.81059 · doi:10.1088/1126-6708/1999/05/011
[96] J.M. Maldacena, Eternal black holes in Anti-de-Sitter, JHEP04 (2003) 021 [hep-th/0106112] [SPIRES]. · doi:10.1088/1126-6708/2003/04/021
[97] D. Klemm, V. Moretti and L. Vanzo, Rotating topological black holes, Phys. Rev.D 57 (1998) 6127 [Erratum ibid.D 60 (1999) 109902] [gr-qc/9710123] [SPIRES].
[98] M.H. Dehghani, Rotating topological black holes in various dimensions and AdS/CFT correspondence, Phys. Rev.D 65 (2002) 124002 [hep-th/0203049] [SPIRES].
[99] R.B. Mann, Charged topological black hole pair creation, Nucl. Phys.B 516 (1998) 357 [hep-th/9705223] [SPIRES]. · Zbl 0920.53047 · doi:10.1016/S0550-3213(97)00833-X
[100] R.-G. Cai and A. Wang, Thermodynamics and stability of hyperbolic charged black holes, Phys. Rev.D 70 (2004) 064013 [hep-th/0406057] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.