×

A refinement of entanglement entropy and the number of degrees of freedom. (English) Zbl 1342.81346

Summary: We introduce a ”renormalized entanglement entropy” which is intrinsically UV finite and is most sensitive to the degrees of freedom at the scale of the size R of the entangled region. We illustrated the power of this construction by showing that the qualitative behavior of the entanglement entropy for a non-Fermi liquid can be obtained by simple dimensional analysis. We argue that the functional dependence of the ”renormalized entanglement entropy” on R can be interpreted as describing the renormalization group flow of the entanglement entropy with distance scale. The corresponding quantity for a spherical region in the vacuum, has some particularly interesting properties. For a conformal field theory, it reduces to the previously proposed central charge in all dimensions, and for a general quantum field theory, it interpolates between the central charges of the UV and IR fixed points as R is varied from zero to infinity. We conjecture that in three (spacetime) dimensions, it is always non-negative and monotonic, and provides a measure of the number of degrees of freedom of a system at scale R. In four dimensions, however, we find examples in which it is neither monotonic nor non-negative.

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory
81P40 Quantum coherence, entanglement, quantum correlations
94A15 Information theory (general)

References:

[1] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE]. · Zbl 1205.81009 · doi:10.1103/RevModPhys.80.517
[2] J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE]. · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[3] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE]. · Zbl 1222.83077
[4] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE]. · Zbl 0972.81649 · doi:10.1103/PhysRevLett.71.666
[5] M.P. Hertzberg and F. Wilczek, Some calculable contributions to entanglement entropy, Phys. Rev. Lett. 106 (2011) 050404 [arXiv:1007.0993] [INSPIRE]. · doi:10.1103/PhysRevLett.106.050404
[6] H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE]. · Zbl 1247.81021
[7] H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].
[8] A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].
[9] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · doi:10.1088/1126-6708/2006/08/045
[10] J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].
[11] R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
[12] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP01 (2011) 125 [arXiv:1011.5819] [INSPIRE]. · Zbl 1214.83036 · doi:10.1007/JHEP01(2011)125
[13] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP06 (2011) 102 [arXiv:1103.1181] [INSPIRE]. · Zbl 1298.81304 · doi:10.1007/JHEP06(2011)102
[14] I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP10 (2011) 038 [arXiv:1105.4598] [INSPIRE]. · Zbl 1303.81127 · doi:10.1007/JHEP10(2011)038
[15] I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement entropy of 3 − D conformal gauge theories with many flavors, JHEP05 (2012) 036 [arXiv:1112.5342] [INSPIRE]. · Zbl 1348.81321 · doi:10.1007/JHEP05(2012)036
[16] D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE]. · doi:10.1103/PhysRevLett.93.030402
[17] T. Grover, A.M. Turner and A. Vishwanath, Entanglement entropy of gapped phases and topological order in three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].
[18] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613]. · doi:10.1103/PhysRevLett.96.110405
[19] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE]. · doi:10.1103/PhysRevLett.96.110404
[20] B. Swingle and T. Senthil, Universal crossovers between entanglement entropy and thermal entropy, Phys. Rev. B 87 (2013) 045123 [arXiv:1112.1069] [INSPIRE].
[21] N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP01 (2012) 125 [arXiv:1111.1023] [INSPIRE]. · Zbl 1306.81128 · doi:10.1007/JHEP01(2012)125
[22] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].
[23] E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, JHEP05 (2012) 065 [arXiv:1112.2702] [INSPIRE]. · Zbl 1348.83059 · doi:10.1007/JHEP05(2012)065
[24] N. Iizuka et al., Bianchi attractors: a classification of extremal black brane geometries, JHEP07 (2012) 193 [arXiv:1201.4861] [INSPIRE]. · Zbl 1397.83156 · doi:10.1007/JHEP07(2012)193
[25] S.-S. Lee, Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions, Phys. Rev. B 80 (2009) 165102 [arXiv:0905.4532].
[26] M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE]. · doi:10.1103/PhysRevLett.96.010404
[27] D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151]. · doi:10.1103/PhysRevLett.96.100503
[28] B. Swingle, Entanglement Entropy and the Fermi Surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE]. · doi:10.1103/PhysRevLett.105.050502
[29] Y. Zhang, T. Grover and A. Vishwanath, Entanglement entropy of critical spin liquids, Phys. Rev. Lett. 107 (2011) 067202 [arXiv:1102.0350] [INSPIRE]. · doi:10.1103/PhysRevLett.107.067202
[30] P. Calabrese, M. Mintchev and E. Vicari, Entanglement entropies in free fermion gases for arbitrary dimension, Europhys. Lett. 97 (2012) 20009 [arXiv:1110.6276] [INSPIRE]. · doi:10.1209/0295-5075/97/20009
[31] C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].
[32] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE]. · Zbl 0990.81564 · doi:10.1016/0550-3213(94)90402-2
[33] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002 · doi:10.1088/1742-5468/2004/06/P06002
[34] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE]. · Zbl 1186.81017
[35] A. Cappelli, D. Friedan and J.I. Latorre, C-theorem and spectral representation, Nucl. Phys. B 352 (1991) 616 [INSPIRE]. · doi:10.1016/0550-3213(91)90102-4
[36] S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE]. · Zbl 1328.81209
[37] Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE]. · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[38] Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP07 (2012) 069 [arXiv:1112.4538] [INSPIRE]. · Zbl 1397.81383 · doi:10.1007/JHEP07(2012)069
[39] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[40] L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP04 (2011) 025 [arXiv:1101.5813] [INSPIRE]. · doi:10.1007/JHEP04(2011)025
[41] M. Huerta, Numerical determination of the entanglement entropy for free fields in the cylinder, Phys. Lett. B 710 (2012) 691 [arXiv:1112.1277] [INSPIRE].
[42] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[43] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE]. · Zbl 1179.81138
[44] T. Albash and C.V. Johnson, Holographic entanglement entropy and renormalization group flow, JHEP02 (2012) 095 [arXiv:1110.1074] [INSPIRE]. · Zbl 1309.81140 · doi:10.1007/JHEP02(2012)095
[45] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP07 (2011) 109 [arXiv:1101.5781] [INSPIRE]. · Zbl 1298.81265 · doi:10.1007/JHEP07(2011)109
[46] J.T. Liu, W. Sabra and Z. Zhao, Holographic c-theorems and higher derivative gravity, Phys. Rev. D 85 (2012) 126004 [arXiv:1012.3382] [INSPIRE].
[47] A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [INSPIRE]. · Zbl 1216.83046 · doi:10.1088/0264-9381/28/8/085002
[48] M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, JHEP05 (2011) 043 [arXiv:1101.5993] [INSPIRE]. · Zbl 1296.81111 · doi:10.1007/JHEP05(2011)043
[49] D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE]. · Zbl 0976.83067
[50] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE]. · Zbl 0951.81056 · doi:10.1016/S0550-3213(99)00764-6
[51] D. Freedman, S. Gubser, K. Pilch and N. Warner, Continuous distributions of D3-branes and gauged supergravity, JHEP07 (2000) 038 [hep-th/9906194] [INSPIRE]. · Zbl 1052.83529 · doi:10.1088/1126-6708/2000/07/038
[52] A. Brandhuber and K. Sfetsos, Nonstandard compactifications with mass gaps and Newton’s law, JHEP10 (1999) 013 [hep-th/9908116] [INSPIRE]. · Zbl 0957.81030 · doi:10.1088/1126-6708/1999/10/013
[53] M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP08 (2001) 041 [hep-th/0105276] [INSPIRE]. · doi:10.1088/1126-6708/2001/08/041
[54] L.-Y. Hung, R.C. Myers and M. Smolkin, Some calculable contributions to holographic entanglement entropy, JHEP08 (2011) 039 [arXiv:1105.6055] [INSPIRE]. · Zbl 1298.81216 · doi:10.1007/JHEP08(2011)039
[55] C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE]. · Zbl 0944.81046 · doi:10.1016/S0550-3213(99)00055-3
[56] A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE]. · Zbl 1189.83036 · doi:10.1016/j.nuclphysb.2008.04.015
[57] R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE]. · Zbl 1039.81543 · doi:10.1016/S0550-3213(02)00134-7
[58] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE]. · Zbl 1057.81550
[59] A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP07 (2008) 097 [arXiv:0805.1891] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/097
[60] A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE]. · Zbl 1050.81686
[61] H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP03 (2009) 048 [arXiv:0812.1773] [INSPIRE]. · doi:10.1088/1126-6708/2009/03/048
[62] B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [INSPIRE].
[63] M. Fujita, Holographic Entanglement Entropy for D = 4 N = 2 SCFTs in F-theory, Prog. Theor. Phys. 128 (2012) 285 [arXiv:1112.5535] [INSPIRE]. · Zbl 1261.81092 · doi:10.1143/PTP.128.285
[64] N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP10 (2011) 147 [arXiv:1107.4363] [INSPIRE]. · Zbl 1303.81177 · doi:10.1007/JHEP10(2011)147
[65] T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP02 (2007) 042 [hep-th/0608213] [INSPIRE]. · doi:10.1088/1126-6708/2007/02/042
[66] T. Nishioka and T. Takayanagi, Ads bubbles, entropy and closed string tachyons, JHEP01 (2007) 090 [hep-th/0611035] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/090
[67] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE]. · Zbl 1219.81214 · doi:10.1016/j.nuclphysb.2007.12.017
[68] I. Bah, A. Faraggi, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic entanglement entropy and phase transitions at finite temperature, Int. J. Mod. Phys. A 24 (2009) 2703 [arXiv:0710.5483] [INSPIRE]. · Zbl 1167.83331
[69] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
[70] J. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [INSPIRE]. · Zbl 1209.81030
[71] R. Lohmayer, H. Neuberger, A. Schwimmer and S. Theisen, Numerical determination of entanglement entropy for a sphere, Phys. Lett. B 685 (2010) 222 [arXiv:0911.4283] [INSPIRE].
[72] R.C. Myers and A. Singh, Comments on Holographic Entanglement Entropy and RG Flows, JHEP04 (2012) 122 [arXiv:1202.2068] [INSPIRE]. · Zbl 1348.81337 · doi:10.1007/JHEP04(2012)122
[73] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].
[74] I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, Is renormalized entanglement entropy stationary at RG fixed points?, JHEP10 (2012) 058 [arXiv:1207.3360] [INSPIRE]. · Zbl 1397.83042 · doi:10.1007/JHEP10(2012)058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.