×

De Sitter space and entanglement. (English) Zbl 1478.83022

Summary: We argue that the notion of entanglement in de Sitter space arises naturally from the non-trivial Lorentzian geometry of the spacetime manifold, which consists of two disconnected boundaries and a causally disconnected interior. In four bulk dimensions, we propose an holographic description of an inertial observer in terms of a thermofield double state in the tensor product of the two boundaries Hilbert spaces, whereby the Gibbons-Hawking formula arises as the holographic entanglement entropy between the past and future conformal infinities. When considering the bulk entanglement between the two causally disconnected Rindler wedges, we show that the corresponding entanglement entropy is given by one quarter of the area of the pair of codimension two minimal surfaces that define the set of fixed points of the \(\mathrm{dS}_4/\mathbb{Z}_q\) orbifold.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
83E05 Geometrodynamics and the holographic principle
81P40 Quantum coherence, entanglement, quantum correlations
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] Riess A G et al 1998 Observational evidence from supernovae for an accelerating universe and a cosmological constant Astron. J.116 1009 · doi:10.1086/300499
[2] Perlmutter S et al 1999 Measurements of Ω and Λ from 42 high-redshift supernovae Astrophys. J.517 565-86 · Zbl 1368.85002 · doi:10.1086/307221
[3] Gibbons G W and Hawking S W 1977 Cosmological event horizons, thermodynamics, and particle creation Phys. Rev. D 15 2738-51 · doi:10.1103/PhysRevD.15.2738
[4] Bekenstein J D 1973 Black holes and entropy Phys. Rev. D 7 2333-46 · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[5] Bekenstein J D 1974 Generalized second law of thermodynamics in black hole physics Phys. Rev. D 9 3292-300 · doi:10.1103/PhysRevD.9.3292
[6] Hawking S W 1975 Particle creation by black holes Commun. Math. Phys.43 199-220 · Zbl 1378.83040 · doi:10.1007/BF02345020
[7] Hawking S W 1976 Black holes and thermodynamics Phys. Rev. D 13 191-7 · doi:10.1103/PhysRevD.13.191
[8] Witten E 2001 Quantum gravity in de Sitter space Strings 2001: Int. Conf.(Mumbai, India, 5-10 January 2001)
[9] Banks T 2001 Cosmological breaking of supersymmetry? Int. J. Mod. Phys. A 16 910-21 · Zbl 0982.83040 · doi:10.1142/S0217751X01003998
[10] Banks T and Fischler W 2001 M theory observables for cosmological space-times (arXiv:hep-th/0102077v1)
[11] Carlip S 1995 Statistical mechanics of the (2 + 1)-dimensional black hole Phys. Rev. D 51 632-7 · doi:10.1103/PhysRevD.51.632
[12] Banados M, Henneaux M, Teitelboim C and Zanelli J 1993 Geometry of the (2 + 1) black hole Phys. Rev. D 48 1506-25 · doi:10.1103/PhysRevD.48.1506
[13] Banados M, Henneaux M, Teitelboim C and Zanelli J 2013 Phys. Rev. D 88 069902 (erratum) · doi:10.1103/PhysRevD.88.069902
[14] Banados M, Teitelboim C and Zanelli J 1992 The black hole in three-dimensional space-time Phys. Rev. Lett.69 1849-51 · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[15] Maldacena J M and Strominger A 1998 Statistical entropy of de Sitter space J. High Energy Phys.JHEP02(1998) 014 · Zbl 0955.83011 · doi:10.1088/1126-6708/1998/02/014
[16] Wald R M 1993 Black hole entropy is the noether charge Phys. Rev. D 48 R3427-31 · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[17] Iyer V and Wald R M 1994 Some properties of the noether charge and a proposal for dynamical black hole entropy Phys. Rev. D 50 846-64 · doi:10.1103/PhysRevD.50.846
[18] Carlip S 1999 Entropy from conformal field theory at Killing horizons Class. Quantum Grav.16 3327-48 · Zbl 0935.83023 · doi:10.1088/0264-9381/16/10/322
[19] Cardy J L 1986 Operator content of two-dimensional conformally invariant theories Nucl. Phys. B 270 186-204 · Zbl 0689.17016 · doi:10.1016/0550-3213(86)90552-3
[20] Bloete H W J, Cardy J L and Nightingale M P 1986 Conformal invariance, the central charge, and universal finite size amplitudes at criticality Phys. Rev. Lett.56 742-5 · doi:10.1103/PhysRevLett.56.742
[21] Strominger A 1998 Black hole entropy from near horizon microstates J. High Energy Phys.JHEP02(1998) 009 · Zbl 0955.83010 · doi:10.1088/1126-6708/1998/02/009
[22] Brown J D and Henneaux M 1986 Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity Commun. Math. Phys.104 207-26 · Zbl 0584.53039 · doi:10.1007/BF01211590
[23] Strominger A 2001 The dS/CFT correspondence J. High Energy Phys.JHEP10(2001) 034 · doi:10.1088/1126-6708/2001/10/034
[24] Park M-I 1998 Statistical entropy of three-dimensional Kerr-de Sitter space Phys. Lett. B 440 275-82 · doi:10.1016/S0370-2693(98)01119-8
[25] Hull C 1998 Timelike t-duality, de sitter space, large J. High Energy Phys.JHEP07(1998) 021 · Zbl 0958.81085 · doi:10.1088/1126-6708/1998/07/021
[26] Banados M, Brotz T and Ortiz M E 1999 Quantum three-dimensional de Sitter space Phys. Rev. D 59 046002 · doi:10.1103/PhysRevD.59.046002
[27] Park M-I 1999 Symmetry algebras in Chern-Simons theories with boundary: canonical approach Nucl. Phys. B 544 377-402 · Zbl 0958.81035 · doi:10.1016/S0550-3213(99)00031-0
[28] Bousso R 1999 A covariant entropy conjecture J. High Energy Phys.JHEP07(1999) 004 · Zbl 0951.83011 · doi:10.1088/1126-6708/1999/07/004
[29] Bousso R 1999 Holography in general space-times J. High Energy Phys.JHEP06(1999) 028 · Zbl 0951.83027 · doi:10.1088/1126-6708/1999/06/028
[30] Bousso R 2000 Positive vacuum energy and the N bound J. High Energy Phys.JHEP11(2000) 038 · Zbl 0990.83513 · doi:10.1088/1126-6708/2000/11/038
[31] Balasubramanian V, Horava P and Minic D 2001 Deconstructing de sitter J. High Energy Phys.JHEP05(2001) 043 · doi:10.1088/1126-6708/2001/05/043
[32] Klemm D 2002 Some aspects of the de Sitter/CFT correspondence Nucl. Phys. B 625 295-311 · Zbl 0985.81115 · doi:10.1016/S0550-3213(02)00007-X
[33] Cacciatori S and Klemm D 2002 The asymptotic dynamics of de Sitter gravity in three-dimensions Class. Quantum Grav.19 579-88 · Zbl 0994.83039 · doi:10.1088/0264-9381/19/3/312
[34] Balasubramanian V, de Boer J and Minic D 2002 Mass, entropy and holography in asymptotically de sitter spaces Phys. Rev. D 65 123508 · doi:10.1103/PhysRevD.65.123508
[35] Bousso R, Maloney A and Strominger A 2002 Conformal vacua and entropy in de Sitter space Phys. Rev. D 65 104039 · doi:10.1103/PhysRevD.65.104039
[36] Spradlin M and Volovich A 2002 Vacuum states and the S matrix in dS/CFT Phys. Rev. D 65 104037 · doi:10.1103/PhysRevD.65.104037
[37] Balasubramanian V, de Boer J and Minic D 2002 Notes on de Sitter space and holography Class. Quantum Grav.19 5655-700 · Zbl 1009.83002 · doi:10.1088/0264-9381/19/22/302
[38] Maldacena J M 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys.JHEP05(2003) 013 · doi:10.1088/1126-6708/2003/05/013
[39] Anninos D, Hartman T and Strominger A 2017 Higher spin realization of the dS/CFT correspondence Class. Quantum Grav.34 015009 · Zbl 1354.83043 · doi:10.1088/1361-6382/34/1/015009
[40] Brown J D and York J W 1993 Quasilocal energy and conserved charges derived from the gravitational action Phys. Rev. D 47 1407-19 · doi:10.1103/PhysRevD.47.1407
[41] Ryu S and Takayanagi T 2006 Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett.96 181602 · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[42] Hubeny V E, Rangamani M and Takayanagi T 2007 A covariant holographic entanglement entropy proposal J. High Energy Phys.JHEP07(2007) 062 · doi:10.1088/1126-6708/2007/07/062
[43] Casini H, Huerta M and Myers R C 2011 Towards a derivation of holographic entanglement entropy J. High Energy Phys.JHEP05(2011) 036 · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[44] Dong X 2016 The gravity dual of Renyi entropy Nat. Commun.7 12472 · doi:10.1038/ncomms12472
[45] Maldacena J M 1999 The Large N limit of superconformal field theories and supergravity Int. J. Theor. Phys.38 1113-33 · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[46] Gubser S S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from noncritical string theory Phys. Lett. B 428 105-14 · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[47] Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys.2 253-91 · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[48] Alishahiha M, Karch A, Silverstein E and Tong D 2005 The dS/dS correspondence AIP Conf. Proc.743 393-409 · doi:10.1063/1.1848341
[49] Dong X, Silverstein E and Torroba G 2018 De Sitter holography and entanglement entropy J. High Energy Phys.JHEP07(2018) 050 · Zbl 1395.81213 · doi:10.1007/JHEP07(2018)050
[50] Sato Y 2015 Comments on entanglement entropy in the dS/CFT correspondence Phys. Rev. D 91 086009 · doi:10.1103/PhysRevD.91.086009
[51] Narayan K 2018 On extremal surfaces and de Sitter entropy Phys. Lett. B 779 214-22 · Zbl 1383.83238 · doi:10.1016/j.physletb.2018.02.010
[52] Jatkar D P, Kolekar K S and Narayan K 2018 N-level ghost-spins and entanglement (arXiv:1812.07925v2)
[53] Arias C, Diaz F, Olea R and Sundell P 2019 Liouville description of conical defects in dS4, Gibbons-Hawking entropy as modular entropy, and dS3 holography (arXiv:1906.05310v1)
[54] Edwards S F and Anderson P W 1975 Theory of spin glasses J. Phys. F: Met. Phys.5 965 · doi:10.1088/0305-4608/5/5/017
[55] Calabrese P and Cardy J L 2004 Entanglement entropy and quantum field theory J. Stat. Mech.2004 P06002 · Zbl 1082.82002 · doi:10.1088/1742-5468/2004/06/P06002
[56] Spradlin M, Strominger A and Volovich A 2001 Les houches lectures on de sitter space (arXiv:hep-th/0110007v2)
[57] Hartman T 2017 Lecture notes on classical de Sitter space
[58] Thurston W and Levy S 2014 Three-Dimensional Geometry and Topology(Princeton Mathematical Series vol 1) (Princeton, NJ: Princeton University Press)
[59] Fursaev D V and Solodukhin S N 1995 On the description of the Riemannian geometry in the presence of conical defects Phys. Rev. D 52 2133-43 · doi:10.1103/PhysRevD.52.2133
[60] Maldacena J 2011 Einstein gravity from conformal gravity (arXiv:1105.5632v2)
[61] Anninos D 2012 De Sitter musings Int. J. Mod. Phys. A 27 1230013 · Zbl 1247.83068 · doi:10.1142/S0217751X1230013X
[62] Rangamani M and Takayanagi T 2017 Holographic entanglement entropy Lect. Notes Phys.931 1-246 · Zbl 1371.81011 · doi:10.1007/978-3-319-52573-0
[63] Lewkowycz A and Maldacena J 2013 Generalized gravitational entropy J. High Energy Phys.JHEP08(2013) 090 · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[64] Kitaev A and Preskill J 2006 Topological entanglement entropy Phys. Rev. Lett.96 110404 · doi:10.1103/PhysRevLett.96.110404
[65] Salton G, Swingle B and Walter M 2017 Entanglement from topology in Chern-Simons theory Phys. Rev. D 95 105007 · doi:10.1103/PhysRevD.95.105007
[66] Melnikov D, Mironov A, Mironov S, Morozov A and Morozov A 2018 From topological to quantum entanglement ITEP/TH-25/18, FIAN/TD-17/18, IITP/TH-15/18 (arXiv:1809.04574v1) · Zbl 1380.81088
[67] Israel W 1976 Thermo-field dynamics of black holes Phy. Lett. A 57 107-10 · doi:10.1016/0375-9601(76)90178-X
[68] Maldacena J M 2003 Eternal black holes in anti-de Sitter J. High Energy Phys.JHEP04(2003) 021 · doi:10.1088/1126-6708/2003/04/021
[69] Balasubramanian V, Hayden P, Maloney A, Marolf D and Ross S F 2014 Multiboundary wormholes and holographic entanglement Class. Quantum Grav.31 185015 · Zbl 1300.81067 · doi:10.1088/0264-9381/31/18/185015
[70] Bao N, Chatwin-Davies A and Remmen G N 2018 Entanglement of purification and multiboundary wormhole geometries (arXiv:1811.01983v3) · Zbl 1411.81169
[71] Dwivedi S, Singh V K, Dhara S, Ramadevi P, Zhou Y and Joshi L K 2018 Entanglement on linked boundaries in Chern-Simons theory with generic gauge groups J. High Energy Phys.JHEP02(2018) 163 · Zbl 1387.58029 · doi:10.1007/JHEP02(2018)163
[72] Peach A and Ross S F 2017 Tensor network models of multiboundary wormholes (arXiv: 1702.05984v1) · Zbl 1369.83097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.