×

Rényi entropy and conformal defects. (English) Zbl 1390.81486

Summary: We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei’s results for the entanglement entropy.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C75 Space-time singularities, cosmic censorship, etc.

References:

[1] M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett.96 (2006) 110405 [INSPIRE]. · doi:10.1103/PhysRevLett.96.110405
[2] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett.96 (2006) 110404 [hep-th/0510092] [INSPIRE]. · doi:10.1103/PhysRevLett.96.110404
[3] H. Li and F. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett.101 (2008) 010504 [INSPIRE]. · doi:10.1103/PhysRevLett.101.010504
[4] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.42 (2010) 2323 [Int. J. Mod. Phys.D19 (2010) 2429] [arXiv:1005.3035] [INSPIRE]. · Zbl 1200.83052
[5] E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, Class. Quant. Grav.31 (2014) 214002 [arXiv:1212.5183] [INSPIRE]. · Zbl 1303.83010 · doi:10.1088/0264-9381/31/21/214002
[6] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE]. · Zbl 1338.83057 · doi:10.1002/prop.201300020
[7] T. Jacobson, Entanglement Equilibrium and the Einstein Equation, Phys. Rev. Lett.116 (2016) 201101 [arXiv:1505.04753] [INSPIRE]. · doi:10.1103/PhysRevLett.116.201101
[8] R. Islam et al., Measuring entanglement entropy through the interference of quantum many-body twins, arXiv:1509.01160.
[9] A. Rényi, On measures of entropy and information, in Fourth Berkeley symposium on mathematical statistics and probability, volume 1, (1961), pg. 547-561. · Zbl 0106.33001
[10] A. Rényi, On the foundations of information theory, Rev. Inst. Int. Stat.33 (1965) 1. · Zbl 0161.16903 · doi:10.2307/1401301
[11] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[12] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · Zbl 1228.83110 · doi:10.1088/1126-6708/2006/08/045
[13] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[14] L.-Y. Hung, R.C. Myers and M. Smolkin, On Holographic Entanglement Entropy and Higher Curvature Gravity, JHEP04 (2011) 025 [arXiv:1101.5813] [INSPIRE]. · doi:10.1007/JHEP04(2011)025
[15] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Entanglement Entropy in Lovelock Gravities, JHEP07 (2011) 109 [arXiv:1101.5781] [INSPIRE]. · Zbl 1298.81265 · doi:10.1007/JHEP07(2011)109
[16] X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP01 (2014) 044 [arXiv:1310.5713] [INSPIRE]. · Zbl 1333.83156 · doi:10.1007/JHEP01(2014)044
[17] J. Camps, Generalized entropy and higher derivative Gravity, JHEP03 (2014) 070 [arXiv:1310.6659] [INSPIRE]. · Zbl 1333.83136 · doi:10.1007/JHEP03(2014)070
[18] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE]. · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[19] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[20] L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Rényi Entropy, JHEP12 (2011) 047 [arXiv:1110.1084] [INSPIRE]. · Zbl 1306.81159 · doi:10.1007/JHEP12(2011)047
[21] X. Dong, An Area-Law Prescription for Holographic Rényi Entropies, arXiv:1601.06788 [INSPIRE].
[22] M.B. Hastings, I. González, A.B. Kallin and R.G. Melko, Measuring Rényi Entanglement Entropy in Quantum Monte Carlo Simulations, Phys. Rev. Lett.104 (2010) 157201 [INSPIRE]. · doi:10.1103/PhysRevLett.104.157201
[23] A.B. Kallin, M.B. Hastings, R.G. Melko and R.R. Singh, Anomalies in the entanglement properties of the square-lattice heisenberg model, Phys. Rev.B 84 (2011) 165134 [arXiv:1107.2840]. · doi:10.1103/PhysRevB.84.165134
[24] A.B. Kallin, E.M. Stoudenmire, P. Fendley, R.R.P. Singh and R.G. Melko, Corner contribution to the entanglement entropy of an O(3) quantum critical point in 2 + 1 dimensions, J. Stat. Mech. (2014) P06009 [arXiv:1401.3504] [INSPIRE]. · Zbl 1456.82054
[25] H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett.B 694 (2011) 167 [arXiv:1007.1813] [INSPIRE]. · Zbl 1116.81008
[26] E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP03 (2014) 117 [arXiv:1308.1083] [INSPIRE]. · Zbl 1333.83149 · doi:10.1007/JHEP03(2014)117
[27] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP10 (2014) 178 [arXiv:1407.6429] [INSPIRE]. · Zbl 1333.81295 · doi:10.1007/JHEP10(2014)178
[28] J. Lee, A. Lewkowycz, E. Perlmutter and B.R. Safdi, Rényi entropy, stationarity and entanglement of the conformal scalar, JHEP03 (2015) 075 [arXiv:1407.7816] [INSPIRE]. · Zbl 1388.83290 · doi:10.1007/JHEP03(2015)075
[29] A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Rényi entropy, JHEP01 (2015) 080 [arXiv:1407.8171] [INSPIRE]. · Zbl 1388.81058 · doi:10.1007/JHEP01(2015)080
[30] J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys.B 240 (1984) 514 [INSPIRE]. · doi:10.1016/0550-3213(84)90241-4
[31] D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys.B 455 (1995) 522 [cond-mat/9505127] [INSPIRE]. · Zbl 0925.81295
[32] M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP04 (2016) 091 [arXiv:1601.02883] [INSPIRE]. · Zbl 1388.81029 · doi:10.1007/JHEP04(2016)091
[33] M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev.D 91 (2015) 045038 [arXiv:1411.7011] [INSPIRE].
[34] A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi entropies, Phys. Rev.D 91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].
[35] P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett.115 (2015) 021602 [arXiv:1505.04804] [INSPIRE]. · doi:10.1103/PhysRevLett.115.021602
[36] P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP08 (2015) 068 [arXiv:1505.07842] [INSPIRE]. · Zbl 1388.83192 · doi:10.1007/JHEP08(2015)068
[37] P. Bueno, R.C. Myers and W. Witczak-Krempa, Universal corner entanglement from twist operators, JHEP09 (2015) 091 [arXiv:1507.06997] [INSPIRE]. · Zbl 1388.83194 · doi:10.1007/JHEP09(2015)091
[38] P. Bueno and R.C. Myers, Universal entanglement for higher dimensional cones, JHEP12 (2015) 168 [arXiv:1508.00587] [INSPIRE]. · Zbl 1388.83193 · doi:10.1007/JHEP12(2015)168
[39] J. Lee, L. McGough and B.R. Safdi, Rényi entropy and geometry, Phys. Rev.D 89 (2014) 125016 [arXiv:1403.1580] [INSPIRE].
[40] A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Rényi entropy, JHEP01 (2015) 080 [arXiv:1407.8171] [INSPIRE]. · Zbl 1388.81058 · doi:10.1007/JHEP01(2015)080
[41] X. Dong, Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories, Phys. Rev. Lett.116 (2016) 251602 [arXiv:1602.08493] [INSPIRE]. · doi:10.1103/PhysRevLett.116.251602
[42] T. Faulkner, R.G. Leigh and O. Parrikar, Shape Dependence of Entanglement Entropy in Conformal Field Theories, JHEP04 (2016) 088 [arXiv:1511.05179] [INSPIRE]. · doi:10.1007/JHEP04(2016)088
[43] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[44] J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy, J. Statist. Phys.130 (2008) 129 [arXiv:0706.3384] [INSPIRE]. · Zbl 1134.81043 · doi:10.1007/s10955-007-9422-x
[45] V.G. Knizhnik, Analytic Fields on Riemann Surfaces. 2, Commun. Math. Phys.112 (1987) 567 [INSPIRE]. · Zbl 0656.58044
[46] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The Conformal Field Theory of Orbifolds, Nucl. Phys.B 282 (1987) 13 [INSPIRE]. · doi:10.1016/0550-3213(87)90676-6
[47] M. Caraglio and F. Gliozzi, Entanglement Entropy and Twist Fields, JHEP11 (2008) 076 [arXiv:0808.4094] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/076
[48] J.S. Dowker, Conformal weights of charged Rényi entropy twist operators for free scalar fields, arXiv:1508.02949 [INSPIRE]. · Zbl 1342.81237
[49] J.S. Dowker, Conformal weights of charged Rényi entropy twist operators for free Dirac fields in arbitrary dimensions, arXiv:1510.08378 [INSPIRE]. · Zbl 1342.81237
[50] L. Bianchi and et al., On the Shape Dependence of Rényi Entropy in Free CFTs, in preparation.
[51] R.C. Myers and A. Singh, Entanglement Entropy for Singular Surfaces, JHEP09 (2012) 013 [arXiv:1206.5225] [INSPIRE]. · doi:10.1007/JHEP09(2012)013
[52] A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy radiated by a quark, JHEP05 (2014) 025 [arXiv:1312.5682] [INSPIRE]. · Zbl 1390.81606 · doi:10.1007/JHEP05(2014)025
[53] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP06 (2012) 048 [arXiv:1202.4455] [INSPIRE]. · doi:10.1007/JHEP06(2012)048
[54] B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung Function in N = 2 Superconformal Field Theories, Phys. Rev. Lett.116 (2016) 081601 [arXiv:1510.01332] [INSPIRE]. · doi:10.1103/PhysRevLett.116.081601
[55] V. Mitev and E. Pomoni, Exact Bremsstrahlung and Effective Couplings, JHEP06 (2016) 078 [arXiv:1511.02217] [INSPIRE]. · Zbl 1388.81866 · doi:10.1007/JHEP06(2016)078
[56] J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett.80 (1998) 4859 [hep-th/9803002] [INSPIRE]. · Zbl 0947.81128 · doi:10.1103/PhysRevLett.80.4859
[57] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J.C 22 (2001) 379 [hep-th/9803001] [INSPIRE]. · Zbl 1072.81555 · doi:10.1007/s100520100799
[58] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE]. · Zbl 1245.81130 · doi:10.1088/1126-6708/2008/10/091
[59] N. Drukker, J. Gomis and S. Matsuura, Probing N = 4 SYM With Surface Operators, JHEP10 (2008) 048 [arXiv:0805.4199] [INSPIRE]. · Zbl 1245.81160 · doi:10.1088/1126-6708/2008/10/048
[60] J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys.B 324 (1989) 581 [INSPIRE]. · doi:10.1016/0550-3213(89)90521-X
[61] J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett.B 259 (1991) 274 [INSPIRE]. · doi:10.1016/0370-2693(91)90828-E
[62] R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys.B 570 (2000) 525 [hep-th/9908036] [INSPIRE]. · Zbl 1028.81520 · doi:10.1016/S0550-3213(99)00592-1
[63] T. Quella and V. Schomerus, Symmetry breaking boundary states and defect lines, JHEP06 (2002) 028 [hep-th/0203161] [INSPIRE]. · doi:10.1088/1126-6708/2002/06/028
[64] T. Quella, I. Runkel and G.M.T. Watts, Reflection and transmission for conformal defects, JHEP04 (2007) 095 [hep-th/0611296] [INSPIRE]. · doi:10.1088/1126-6708/2007/04/095
[65] J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys.B 763 (2007) 354 [hep-th/0607247] [INSPIRE]. · Zbl 1116.81060 · doi:10.1016/j.nuclphysb.2006.11.017
[66] V.B. Petkova and J.B. Zuber, Generalized twisted partition functions, Phys. Lett.B 504 (2001) 157 [hep-th/0011021] [INSPIRE]. · Zbl 0977.81128 · doi:10.1016/S0370-2693(01)00276-3
[67] J. Fuchs, M.R. Gaberdiel, I. Runkel and C. Schweigert, Topological defects for the free boson CFT, J. Phys.A 40 (2007) 11403 [arXiv:0705.3129] [INSPIRE]. · Zbl 1142.81363
[68] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. (2011) P01021 [arXiv:1011.5482] [INSPIRE]. · Zbl 1305.81122
[69] M. Billó, M. Caselle, D. Gaiotto, F. Gliozzi, M. Meineri and R. Pellegrini, Line defects in the 3d Ising model, JHEP07 (2013) 055 [arXiv:1304.4110] [INSPIRE]. · doi:10.1007/JHEP07(2013)055
[70] M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, Phys. Rev.D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].
[71] G.W. Semenoff and D. Young, Wavy Wilson line and AdS/CFT, Int. J. Mod. Phys.A 20 (2005) 2833 [hep-th/0405288] [INSPIRE]. · Zbl 1072.81050 · doi:10.1142/S0217751X0502077X
[72] M. Smolkin and S.N. Solodukhin, Correlation functions on conical defects, Phys. Rev.D 91 (2015) 044008 [arXiv:1406.2512] [INSPIRE].
[73] M.E.X. Guimaraes and B. Linet, Scalar Green’s functions in an Euclidean space with a conical-type line singularity, Commun. Math. Phys.165 (1994) 297 [INSPIRE]. · Zbl 0810.53087 · doi:10.1007/BF02099773
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.