×

Sine transform based preconditioning techniques for space fractional diffusion equations. (English) Zbl 07729591

Summary: We study the preconditioned iterative methods for the linear systems arising from the numerical solution of the multi-dimensional space fractional diffusion equations. A sine transform based preconditioning technique is developed according to the symmetric and skew-symmetric splitting of the Toeplitz factor in the resulting coefficient matrix. Theoretical analyses show that the upper bound of relative residual norm of the GMRES method when applied to the preconditioned linear system is mesh-independent which implies the linear convergence. Numerical experiments are carried out to illustrate the correctness of the theoretical results and the effectiveness of the proposed preconditioning technique.

MSC:

65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] PodlubnyI. Fractional differential equations. New York: Academic Press; 1999. · Zbl 0924.34008
[2] BensonD, WheatcraftSW, MeerschaertMM. Application of a fractional advection‐dispersion equation. Water Resour Res. 2000;36:1403-13.
[3] BensonD, WheatcraftSW, MeerschaertMM. The fractional‐order governing equation of Lévy motion. Water Resour Res. 2000;36:1413-23.
[4] CarrerasBA, LynchVE, ZaslavskyGM. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys Plasma. 2001;8:5096-103.
[5] ZaslavskyGM. Chaos, fractional kinetics, and anomalous transport. Phys Rep. 2002;371:461-580. · Zbl 0999.82053
[6] MandelbrotBB. The fractal geometry of nature. San Francisco: Freeman; 1983.
[7] ZhangJ, ChenK. A total fractional‐order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J Imaging Sci. 2015;8:2487-518. · Zbl 1327.62388
[8] SokolovIM, KlafterJ, BlumenA. Fractional kinetics. Phys Today. 2002;55:48-54.
[9] ChenM, DengW. Fourth order accurate scheme for the space fractional diffusion equations. SIAM J Numer Anal. 2014;52:1418-38. · Zbl 1318.65048
[10] IlicM, LiuF, TurnerI, AnhV. Numerical approximation of a fractional‐in‐space diffusion equation, I. Fract Calc Appl Anal. 2005;8:323-41. · Zbl 1126.26009
[11] IlicM, LiuF, TurnerI, AnhV. Numerical approximation of a fractional‐in‐space diffusion equation (II)‐with nonhomogeneous boundary conditions. Fract Calc Appl Anal. 2006;9:333-49. · Zbl 1132.35507
[12] MeerschaertMM, TadjeranC. Finite difference approximations for fractional advection‐dispersion equations. J Comput Appl Math. 2004;172:209-19.
[13] TianW, ZhouH, DengW. A class of second order difference approximation for solving space fractional diffusion equations. Math Comp. 2015;84:1703-27. · Zbl 1318.65058
[14] BuW, TangY, YangJ. Galerkin finite element method for two‐dimensional Riesz space fractional diffusion equations. J Comput Phys. 2014;276:26-38. · Zbl 1349.65441
[15] LiM, GuX‐M, HuangC, FeiM, ZhangG. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J Comput Phys. 2018;358:256-82. · Zbl 1382.65320
[16] ZhaoX, HuX, CaiW, KarniadakisG. Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng. 2017;325:56-76. · Zbl 1439.65091
[17] FengL, ZhuangP, LiuF, TurnerI. Stability and convergence of a new finite volume method for a two‐sided space‐fractional diffusion equation. Appl Math Comput. 2015;257:52-65. · Zbl 1339.65144
[18] FuH, SunY, WangH, ZhengX. Stability and convergence of a Crank‐Nicolson finite volume method for space fractional diffusion equations. Appl Numer Math. 2019;139:38-51. · Zbl 1411.65120
[19] SimmonsA, YangQ, MoroneyT. A finite volume method for two‐sided fractional diffusion equations on non‐uniform meshes. J Comput Phys. 2017;335:747-59. · Zbl 1383.65101
[20] HouD, AzaiezM, XuC. Müntz spectral method for two‐dimensional space‐fractional convection‐diffusion equation. Commun Comput Phys. 2019;26:1415-43. · Zbl 1518.65117
[21] ZhangH, JiangX, ZengF, KarniadakisG. A stabilized semi‐implicit Fourier spectral method for nonlinear space‐fractional reaction‐diffusion equations. J Comput Phys. 2020;405:109141. · Zbl 1453.65370
[22] WangH, WangK, SircarT. A direct
[( O\left(N{\log}^2N\right) \]\) finite difference method for fractional diffusion equations. J Comput Phys. 2010;229:8095-104. · Zbl 1198.65176
[23] ChenM, DengW. Convergence analysis of a multigrid method for a nonlocal model. SIAM J Matrix Anal Appl. 2017;38:869-90. · Zbl 1373.65068
[24] PangH, SunH. Multigrid method for fractional diffusion equations. J Comput Phys. 2012;231:693-703. · Zbl 1243.65117
[25] BertacciniD, DurastanteF. Limited memory block preconditioners for fast solution of fractional partial differential equations. J Sci Comput. 2018;77:950-70. · Zbl 1404.65014
[26] DonatelliM, MazzaM, Serra‐CapizzanoS. Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J Comput Phys. 2016;307:262-79. · Zbl 1352.65305
[27] LeiS, SunH. A circulant preconditioner for fractional diffusion equations. J Comput Phys. 2013;242:715-25. · Zbl 1297.65095
[28] LinF, YangS, JinX. Preconditioned iterative methods for fractional diffusion equation. J Comput Phys. 2014;256:109-17. · Zbl 1349.65314
[29] PanJ, KeR, NgM, SunH. Preconditioning techniques for diagonal‐times‐Toeplitz matrices in fractional diffusion equations. SIAM J Sci Comput. 2014;36:A2698-719. · Zbl 1314.65112
[30] PangH, QinH, SunH, MaT. Circulant‐based approximate inverse preconditioners for a class of fractional diffusion equations. Comput Math Appl. 2021;85:18-29. · Zbl 1524.65124
[31] BaiZ. Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer Linear Algebra Appl. 2018;25:e2157. · Zbl 1524.65126
[32] BaiZ, LuK. On regularized Hermitian splitting iteration methods for solving discretized almost‐isotropic spatial fractional diffusion equations. Numer Linear Algebra Appl. 2020;27:e2274. · Zbl 1463.65039
[33] BiniD, Di BenedettoF. A new preconditioner for the parallel solution of positive definite Toeplitz systems. Proceedings of the 2nd SPAA Conference Crete (Greece); 1990. p. 220-3.
[34] BiniD, CapovaniM. Spectral and computational properties of band symmetric Toeplitz matrices. Linear Algebra Appl. 1983;52(53):99-126. · Zbl 0549.15005
[35] NoutsosD, Serra‐CapizzanoS, VassalosP. Essential spectral equivalence via multiple step preconditioning and applications to ill conditioned Toeplitz matrices. Linear Algebra Appl. 2016;491:276-91. · Zbl 1391.65071
[36] HuangX, LinX, NgM, SunH. Spectral analysis for preconditioning of multidimensional Riesz fractional diffusion equations. Numer Math Theor Meth Appl. 2022;15:565‐91. · Zbl 1513.65054
[37] Serra‐CapizzanoS, TyrtyshnikovE. Any circulant‐like preconditioner for multilevel matrices is not superlinear. SIAM J Matrix Anal Appl. 1999;21(2):431-9. · Zbl 0952.65037
[38] JinX. Preconditioning techniques for Toeplitz systems. Beijing: Higher Education Press; 2010.
[39] PangH, SunH. Fast numerical contour integral method for fractional diffusion equations. J Sci Comput. 2016;66:41-66. · Zbl 1351.65058
[40] BeckermannB. Image numérique, GMRES et polynômes de Faber. C R Acad Sci Paris Ser I. 2005;340:855-60. · Zbl 1076.47004
[41] LiesenJ, TichýP. The field of value bounds on ideal GMRES, arXiv:1211.5969v3 [math.NA], 2020.
[42] VongS, LyuP. On a second order scheme for space fractional diffusion equations with variable coefficients. Appl Numer Math. 2019;137:34-48. · Zbl 1419.65032
[43] BertacciniD, NgM. Block
[( \upomega \]\)‐circulant preconditioners for the systems of differential equations. Calcolo. 2003;40:71-90. · Zbl 1072.65044
[44] HuckleT. Circulant and skewcirculant matrices for solving Toeplitz matrix problems. SIAM J Matrix Anal Appl. 1992;13:767-77. · Zbl 0756.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.