×

Essential spectral equivalence via multiple step preconditioning and applications to ill conditioned Toeplitz matrices. (English) Zbl 1391.65071

Summary: In this note, we study the fast solution of Toeplitz linear systems with coefficient matrix \(T_n(f)\), where the generating function \(f\) is nonnegative and has a unique zero at zero of any real positive order \(\theta\). As preconditioner we choose a matrix \(\tau_n(f)\) belonging to the so-called \(\tau\) algebra, which is diagonalized by the sine transform associated to the discrete Laplacian. In previous works, the spectral equivalence of the matrix sequences \(\{\tau_n(f) \}_n\) and \(\{T_n(f) \}_n\) was proven under the assumption that the order of the zero is equal to 2: in other words the preconditioned matrix sequence \(\{\tau_n^{- 1}(f) T_n(f) \}_n\) has eigenvalues, which are uniformly away from zero and from infinity. Here we prove a partial generalization of the above result when \(\theta < 2\). Furthermore, by making use of multiple step preconditioning, we show that the matrix sequences \(\{\tau_n(f) \}_n\) and \(\{T_n(f) \}_n\) are essentially spectrally equivalent for every \(\theta > 2\), i.e., for every \(\theta > 2\), there exist \(m_\theta\) and a positive interval \([\alpha_\theta, \beta_\theta]\) such that all the eigenvalues of \(\{\tau_n^{- 1}(f) T_n(f) \}_n\) belong to this interval, except at most \(m_\theta\) outliers larger than \(\beta_\theta\): while the essential bound from above is proven, the bound from below is only observed numerically. Such a nice property, already known only when \(\theta\) is an even positive integer greater than 2, is coupled with the fact that the preconditioned sequence has an eigenvalue cluster at one, so that the convergence rate of the associated preconditioned conjugate gradient method is optimal. As a conclusion we discuss possible generalizations and we present selected numerical experiments.

MSC:

65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F35 Numerical computation of matrix norms, conditioning, scaling

References:

[1] Axelsson, O.; Lindskog, G., On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48, 499-523 (1986) · Zbl 0564.65017
[2] Bhatia, R., Matrix Analysis (1997), Springer-Verlag: Springer-Verlag New York
[3] Bini, D.; Capovani, M., Spectral and computational properties of band symmetric toeplitz matrices, Linear Algebra Appl., 52, 99-126 (1983) · Zbl 0549.15005
[4] Bini, D.; Di-Benedetto, F., A new preconditioner for the parallel solution of positive definite toeplitz systems, (Proc. 2nd SPAA (1990), ACM Press: ACM Press Crete, Greece), 120-123
[5] Chan, R. H.; Jin, X.-Q., An Introduction to Iterative Toeplitz Solvers (2007), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1146.65028
[6] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley Publishing · Zbl 1378.65009
[7] Del Prete, V.; Di Benedetto, F.; Donatelli, M.; Serra-Capizzano, S., Symbol approach in a signal-restoration problem involving block toeplitz matrices, J. Comput. Appl. Math., 272, 399-416 (2014) · Zbl 1294.15020
[8] Di Benedetto, F., Analysis of preconditioning techniques for ill-conditioned Toeplitz matrices, SIAM J. Sci. Comput., 16, 682-697 (1995) · Zbl 0830.65032
[9] Di Benedetto, F.; Fiorentino, G.; Serra Capizzano, S., C.G. preconditioning of Toeplitz matrices, Comput. Math. Appl., 25, 35-45 (1993) · Zbl 0782.65063
[10] Di Benedetto, F.; Serra Capizzano, S., A unifying approach to abstract matrix algebra preconditioning, Numer. Math., 82, 57-90 (1999) · Zbl 0930.65050
[11] Donatelli, M.; Garoni, C.; Manni, C.; Serra Capizzano, S.; Speleers, H., Robust and optimal multi-iterative techniques for IGA collocation linear systems, Comput. Methods Appl. Mech. Engrg., 284, 1120-1146 (2015) · Zbl 1425.65196
[12] Donatelli, M.; Garoni, C.; Manni, C.; Serra Capizzano, S.; Speleers, H., Robust and optimal multi-iterative techniques for IGA Galerkin linear systems, Comput. Methods Appl. Mech. Engrg., 284, 230-264 (2015) · Zbl 1425.65136
[13] Huckle, T., Iterative methods for ill-conditioned toeplitz matrices, Calcolo, 33, 177-190 (1996) · Zbl 0904.65036
[14] Huckle, T.; Noutsos, D., Preconditioning block Toeplitz matrices, Electron. Trans. Numer. Anal., 29, 31-45 (2007) · Zbl 1171.65370
[15] Kailath, T.; Sayed, A., Fast Reliable Algorithms for Matrices with Structure (1999), Society for Industrial and Applied Mathematics · Zbl 0931.65018
[16] Miranda, M.; Tilli, P., Asymptotic spectra of hermitian block Toeplitz matrices and preconditioning results, SIAM J. Matrix Anal. Appl., 21, 867-881 (2000) · Zbl 0957.15011
[17] Ng, M. K., Iterative Methods for Toeplitz Systems, Numer. Math. Sci. Comput. (2004), Oxford University Press, Inc.: Oxford University Press, Inc. New York, NY, USA · Zbl 1059.65031
[18] Noutsos, D.; Serra Capizzano, S.; Vassalos, P., Spectral equivalence and matrix algebra preconditioners for multilevel Toeplitz systems: a negative result, Contemp. Math., 323, 313-322 (2003) · Zbl 1039.65029
[19] Noutsos, D.; Serra Capizzano, S.; Vassalos, P., Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate, Theoret. Comput. Sci., 315, 557-579 (2004) · Zbl 1059.65041
[20] Noutsos, D.; Vassalos, P., Superlinear convergence for PCG using band plus algebra preconditioners for Toeplitz systems, Comput. Math. Appl., 56, 1255-1270 (2008) · Zbl 1155.65322
[21] Serra Capizzano, S., Multi-iterative methods, Comput. Math. Appl., 26, 65-87 (1993) · Zbl 0790.65025
[22] Serra Capizzano, S., New PCG based algorithms for the solution of Hermitian Toeplitz systems, Calcolo, 32, 153-176 (1995) · Zbl 0882.65019
[23] Serra Capizzano, S., Spectral and computational analysis of block Toeplitz matrices having nonnegative definite matrix-valued generating functions, BIT, 39, 152-175 (1999) · Zbl 0917.65031
[24] Serra Capizzano, S., Superlinear PCG methods for symmetric Toeplitz systems, Math. Comp., 68, 793-803 (1999) · Zbl 1043.65066
[25] Serra Capizzano, S.; Tyrtyshnikov, E., Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl., 21, 431-439 (1999) · Zbl 0952.65037
[26] Serra Capizzano, S.; Tyrtyshnikov, E., How to prove that a preconditioner can not be superlinear, Math. Comp., 72, 1305-1316 (2003) · Zbl 1021.15005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.