×

A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. (English) Zbl 1327.62388

Summary: To overcome the weakness of a total variation based model for image restoration, various high order (typically second order) regularization models have been proposed and studied recently. In this paper we analyze and test a fractional-order derivative based total \(\alpha\)-order variation model which can outperform the currently popular high order regularization models. There exist several previous works using total \(\alpha\)-order variations for image restoration; however, first, no analysis has been done yet, and second, all tested formulations, differing from each other, utilize the zero Dirichlet boundary conditions which are not realistic (while nonzero boundary conditions violate definitions of fractional-order derivatives). This paper first reviews some results of fractional-order derivatives and then analyzes the theoretical properties of the proposed total \(\alpha\)-order variational model rigorously. It then develops four algorithms for solving the variational problem – one based on the variational Split-Bregman idea and three based on direct solution of the discretize-optimization problem. Numerical experiments show that, in terms of restoration quality and solution efficiency, the proposed model can produce highly competitive results, for smooth images, to two established high order models: the mean curvature and the total generalized variation.

MSC:

62H35 Image analysis in multivariate analysis
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
74G65 Energy minimization in equilibrium problems in solid mechanics
74G75 Inverse problems in equilibrium solid mechanics

Software:

ma2dfc

References:

[1] R. Acar and C. R. Vogel, {\it Analysis of bounded variation penalty methods for ill-posed problems}, Inverse Problems, 10 (1994), pp. 1217-1229. · Zbl 0809.35151
[2] V. Agarwal, A. V. Gribok, and M. A. Abidi, {\it Image restoration using l-1 norm penalty function}, Inverse Probl. Sci. Eng., 15 (2007), pp. 785-809. · Zbl 1258.94013
[3] O. P. Agrawal, {\it Formulation of Euler-Lagrange equations for fractional variational problems}, J. Math. Anal. Appl., 272 (2002), pp. 368-379. · Zbl 1070.49013
[4] O. P. Agrawal, {\it Fractional variational calculus in terms of Riesz fractional derivatives}, J. Phys. A, 40 (2007), pp. 62-87.
[5] R. Almeida and D. F. M. Torres, {\it Calculus of variations with fractional derivatives and fractional integrals}, Appl. Math. Lett., 22 (2009), pp. 1816-1820. · Zbl 1183.26005
[6] R. Almeida and D. F. M. Torres, {\it Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives}, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), pp. 1490-1500. · Zbl 1221.49038
[7] L. Ambrosio and S. Masnou, {\it A direct variational approach to a problem arising in image reconstruction}, Interfaces Free Bound., 5 (2003), pp. 63-82. · Zbl 1029.49037
[8] A. Atangana and A. Secer, {\it A note on fractional order derivatives and table of fractional derivatives of some special functions}, Abstr. Appl. Anal., 2013 (2013), 279681. · Zbl 1276.26010
[9] G. Aubert and P. Kornprobst, {\it Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations}, 2nd ed., Appl. Math. Sci. 147, Springer-Verlag, New York, 2006. · Zbl 1110.35001
[10] J. F. Aujol, {\it Some first-order algorithms for total variation based image restoration}, J. Math. Imaging Vision, 34 (2009), pp. 307-327. · Zbl 1287.94012
[11] J. Bai and X.-C. Feng, {\it Fractional-order anisotropic diffusion for image denoising}, IEEE Trans. Image Process., 16 (2007), pp. 2492-2502.
[12] H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, {\it Fixed-Point Algorithms for Inverse Problems in Science and Engineering}, Springer Optim. Appl. 49, Springer, New York, 2011. · Zbl 1217.00018
[13] A. Beck and M. Teboulle, {\it Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems}, IEEE Trans. Image Process., 18 (2009), pp. 2419-2434. · Zbl 1371.94049
[14] A. Beck and M. Teboulle, {\it A fast iterative shrinkage-thresholding algorithm for linear inverse problems}, SIAM J. Imaging Sci., 2 (2009), pp. 183-202. · Zbl 1175.94009
[15] K. Bredies, K. Kunisch, and T. Pock, {\it Total generalized variation}, SIAM J. Imaging Sci., 3 (2010), pp. 492-526. · Zbl 1195.49025
[16] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, and S. Osher, {\it Fast global minimization of the active contour/snake model}, J. Math. Imaging Vision, 28 (2007), pp. 151-167. · Zbl 1523.94005
[17] C. Brito-Loeza and K. Chen, {\it Multigrid algorithm for high order denoising}, SIAM J. Imaging Sci., 3 (2010), pp. 363-389. · Zbl 1205.68474
[18] A. Chambolle, {\it An algorithm for total variation minimization and applications}, J. Math. Imaging Vision, 20 (2004), pp. 89-97. · Zbl 1366.94048
[19] A. Chambolle and P. L. Lions, {\it Image recovery via total variation minimization and related problems}, Numer. Math., 76 (1997), pp. 167-188. · Zbl 0874.68299
[20] A. Chambolle and T. Pock, {\it A first-order primal-dual algorithm for convex problems with applications to imaging}, J. Math. Imaging Vision, 40 (2011), pp. 120-145. · Zbl 1255.68217
[21] R. H. Chan, A. Lanza, S. Morigi, and F. Sgallari, {\it An adaptive strategy for the restoration of textured images using fractional order regularization}, Numer. Math. Theory Methods Appl., 6 (2013), pp. 276-296. · Zbl 1289.68196
[22] T. Chan, A. Marquina, and P. Mulet, {\it High-order total variation-based image restoration}, SIAM J. Sci. Comput., 22 (2000), pp. 503-516. · Zbl 0968.68175
[23] T. Chan, A. M. Yip, and F. E. Park, {\it Simultaneous total variation image inpainting and blind deconvolution}, Internat. J. Imaging Syst. Tech., 15 (2005), pp. 92-102.
[24] T. F. Chan, S. H. Kang, and J. Shen, {\it Euler’s elastica and curvature-based inpainting}, SIAM J. Appl. Math., 63 (2002), pp. 564-592. · Zbl 1028.68185
[25] T. F. Chan and J. Shen, {\it Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods}, SIAM, Philadelphia, 2005. · Zbl 1095.68127
[26] Q. S. Chang, X. C. Tai, and L. Xing, {\it A compound algorithm of denoising using second-order and fourth-order partial differential equations}, Numer. Math. Theory Methods Appl., 2 (2009), pp. 353-376. · Zbl 1212.68383
[27] D. Chen, Y. Chen, and D. Xue, {\it Fractional-order total variation image restoration based on primal-dual algorithm}, Abstr. Appl. Anal., 2013 (2013), 585310. · Zbl 1364.94091
[28] D. Chen, Y. Chen, and D. Xue, {\it Three fractional-order TV-\(l^2\) models for image denoising}, J. Comput. Inform. Syst., 9 (2013), pp. 4773– 4780.
[29] D. Chen, S. S. Sun, C. R. Zhang, Y. Q. Chen, and D. Y. Xue, {\it Fractional-order TV-L2 model for image denoising}, Cent. Eur. J. Phys., 11 (2013), pp. 1414-1422.
[30] N. Chumchob, K. Chen, and C. Brito-Loeza, {\it A fourth-order variational image registration model and its fast multigrid algorithm}, Multiscale Model. Simul., 9 (2011), pp. 89-128. · Zbl 1218.65022
[31] P. L. Combettes and V. R. Wajs, {\it Signal recovery by proximal forward-backward splitting}, Multiscale Model. Simul., 4 (2005), pp. 1168-1200. · Zbl 1179.94031
[32] G. Dal Maso, I. Fonseca, G. Leoni, and M. Morini, {\it A higher order model for image restoration: The one-dimensional case}, SIAM J. Math. Anal., 40 (2009), pp. 2351-2391. · Zbl 1193.49012
[33] V. Duval, J. F. Aujol, and L. Vese, {\it Projected gradient based color image decomposition}, in Scale Space and Variational Methods in Computer Vision, Lecture Notes in Comput. Sci. 5567, Springer, Berlin, 2009, pp. 295-306. · Zbl 1233.68026
[34] L. C. Evans and R. F. Gariepy, {\it Measure Theory and Fine Properties of Functions}, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1991. · Zbl 0804.28001
[35] R. P. Fedkiw, G. Sapiro, and C. W. Shu, {\it Shock capturing, level sets, and PDE based methods in computer vision and image processing: A review of Osher’s contributions}, J. Comput. Phys., 185 (2003), pp. 309-341. · Zbl 1026.68147
[36] B. Fischer and J. Modersitzki, {\it Fast diffusion registration}, Contemp. Math., 313 (2002), pp. 117-128. · Zbl 1047.68150
[37] B. Fischer and J. Modersitzki, {\it Curvature based image registration}, J. Math. Imaging Vision, 18 (2003), pp. 81-85. · Zbl 1034.68110
[38] C. Frohn-Schauf, S. Henn, and K. Witsch, {\it Multigrid based total variation image registration}, Comput. Vis. Sci., 11 (2008), pp. 101-113. · Zbl 1071.65093
[39] J. B. Garnett, T. M. Le, Y. Meyer, and L. A. Vese, {\it Image decompositions using bounded variation and generalized homogeneous Besov spaces}, Appl. Comput. Harmon. Anal., 23 (2007), pp. 25-56. · Zbl 1118.68176
[40] S. Geman and D. Geman, {\it Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images}, IEEE Trans. Pattern Anal. Machine Intell., 6 (1984), pp. 721-741. · Zbl 0573.62030
[41] P. Getreuer, {\it Total variation inpainting using split Bregman}, Image Process. On Line, 2 (2012), 147–157.
[42] S. N. Ghate, S. Achaliya, and S. Raveendran, {\it An algorithm of total variation for image inpainting}, Internat. J. Comput. Electron. Res., 1 (2012), pp. 124-130.
[43] E. Giusti, {\it Minimal Surfaces and Functions of Bounded Variation}, Springer, New York, 1984. · Zbl 0545.49018
[44] T. Goldstein and S. Osher, {\it The split Bregman method for L1-regularized problems}, SIAM J. Imaging Sci., 2 (2009), pp. 323-343. · Zbl 1177.65088
[45] P. Guidotti, {\it A new nonlocal nonlinear diffusion of image processing}, J. Differential Equations, 246 (2009), pp. 4731-4742. · Zbl 1170.35450
[46] P. Guidotti and J. V. Lambers, {\it Two new nonlinear nonlocal diffusions for noise reduction}, J. Math. Imaging Vision, 33 (2009), pp. 25-37. · Zbl 1523.94010
[47] W. Guo and L. H. Qiao, {\it Inpainting based on total variation}, in Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition (Beijing, 2007), Vol. 2, IEEE, Washington, DC, 2007, pp. 939-943.
[48] R. Hilfer, {\it Applications of Fractional Calculus in Physics}, World Scientific, Singapore, 2000. · Zbl 0998.26002
[49] L. Hömke, C. Frohn-Schauf, S. Henn, and K. Witsch, {\it Total variation based image registration}, in Image Processing Based on Partial Differential Equations, Springer, New York, 2007, pp. 343-361.
[50] M. Janev, S. Pilipović, T. Atanacković, R. Obradović, and N. Ralević, {\it Fully fractional anisotropic diffusion for image denoising}, Math. Comput. Model., 54 (2011), pp. 729-741. · Zbl 1225.94003
[51] G. Jumarie, {\it Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions: Further results}, Comput. Math. Appl., 51 (2006), pp. 1367-1376. · Zbl 1137.65001
[52] H. Köstler, K. Ruhnau, and R. Wienands, {\it Multigrid solution of the optical flow system using a combined diffusion-and curvature-based regularizer}, Numer. Linear Algebra Appl., 15 (2008), pp. 201-218. · Zbl 1212.65366
[53] M. Lysaker, A. Lundervold, and X. C. Tai, {\it Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time}, IEEE Trans. Image Process., 12 (2003), pp. 1579-1590. · Zbl 1286.94020
[54] M. Lysaker, S. Osher, and X. C. Tai, {\it Noise removal using smoothed normals and surface fitting}, IEEE Trans. Image Process., 13 (2004), pp. 1345-1357. · Zbl 1286.94022
[55] A. Melbourne, N. Cahill, C. Tanner, M. Modat, D. J. Hawkes, and S. Ourselin, {\it Using fractional gradient information in non-rigid image registration: Application to breast MRI}, in Medical Imaging 2012: Image Processing, Proc. SPIE 8314, 2012, 83141Z.
[56] K. S. Miller and B. Ross, {\it An Introduction to the Fractional Calculus and Fractional Differential Equations}, Wiley Interscience, New York, 1993. · Zbl 0789.26002
[57] J. Modersitzki, {\it Numerical Methods for Image Registration}, Oxford University Press, Oxford, UK, 2004. · Zbl 1055.68140
[58] Y. Nesterov, {\it A method for unconstrained convex minimization problem with the rate of convergence \(o(1/k^2)\)}, Soviet Math. Dokl., 269 (1983), pp. 543-547.
[59] Y. Nesterov, {\it Gradient methods for minimizing composite functions}, Math. Program., 140 (2013), pp. 125-161. · Zbl 1287.90067
[60] K. B. A. Oldham and J. A. Spanier, {\it The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order}, Dover, New York, 2006. · Zbl 0292.26011
[61] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, {\it An iterative regularization method for total variation-based image restoration}, Multiscale Model. Simul., 4 (2005), pp. 460-489. · Zbl 1090.94003
[62] S. Osher, A. Solé, and L. Vese, {\it Image decomposition and restoration using total variation minimization and the \(H^{-1}\) norm}, Multiscale Model. Simul., 1 (2003), pp. 349-370. · Zbl 1051.49026
[63] T. Pock, M. Urschler, C. Zach, R. Beichel, and H. Bischof, {\it A duality based algorithm for TV-L1-optical-flow image registration}, in Medical Image Computing and Computer-Assisted Intervention, Springer, New York, 2007, pp. 511-518.
[64] I. Podlubny, {\it Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications}, Math. Sci. Engrg. 198, Academic Press, San Diego, CA, 1999. · Zbl 0924.34008
[65] I. Podlubny, {\it Matrix approach to discrete fractional calculus}, Fract. Calc. Appl. Anal., 3 (2000), pp. 359-386. · Zbl 1030.26011
[66] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B. M. Vinagre-Jara, {\it Matrix approach to discrete fractional calculus II: Partial fractional differential equations}, J. Comput. Phys., 228 (2009), pp. 3137-3153. · Zbl 1160.65308
[67] P. D. Romero and V. F. Candela, {\it Blind deconvolution models regularized by fractional powers of the Laplacian}, J. Math. Imaging Vision, 32 (2008), pp. 181-191. · Zbl 1523.94017
[68] L. Rudin, S. Osher, and E. Fatemi, {\it Nonlinear total variation based noise removal algorithms}, Phys. D, 60 (1992), pp. 259-268. · Zbl 0780.49028
[69] S. G. Samko, A. A. Kilbas, and O. I. Marichev, {\it Fractional integrals and derivatives: Theory and Applications}, CRC Press, Boca Raton, FL, 1993. · Zbl 0818.26003
[70] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen, {\it Variational Methods in Imaging}, Appl. Math. Sci. 167, Springer, New York, 2009. · Zbl 1177.68245
[71] S. Setzer, {\it Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage}, in Scale Space and Variational Methods in Computer Vision, Lecture Notes in Comput. Sci. 5567, Springer, Berlin, 2009, pp. 464-476. · Zbl 1233.68026
[72] S. Setzer, {\it Operator splittings, Bregman methods and frame shrinkage in image processing}, Internat. J. Comput. Vis., 92 (2011), pp. 265-280. · Zbl 1235.68314
[73] Z. Shen, K.-C. Toh, and S. Yun, {\it An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach}, SIAM J. Imaging Sci., 4 (2011), pp. 573-596. · Zbl 1219.94012
[74] G. Steidl, S. Didas, and J. Neumann, {\it Relations between higher order TV regularization and support vector regression}, in Scale Space and PDE Methods in Computer Vision, Lecture Notes in Comput. Sci. 3459, Springer, Berlin, 2005, pp. 515-527. · Zbl 1119.68507
[75] L. Sun and K. Chen, {\it A new iterative algorithm for mean curvature-based variational image denoising}, BIT, 54 (2014), pp. 523-553. · Zbl 1342.94030
[76] A. N. Tikhonov and V. Y. Arsenin, {\it Solutions of Ill-Posed Problems}, John Wiley & Sons, New York, 1977. · Zbl 0354.65028
[77] M. Unger, T. Pock, W. Trobin, D. Cremers, and H. Bischof, {\it TVSeg-interactive total variation based image segmentation}, in BMVC: 2008 British Machine Vision Conference, Leeds, UK, 2008, pp. 1-10.
[78] R. Verdú-Monedero, J. Larrey-Ruiz, J. Morales-Sánchez, and J. L. Sancho-Gómez, {\it Fractional regularization term for variational image registration}, Math. Probl. Eng., 2009 (2009), 707026. · Zbl 1191.68799
[79] H. Wang and N. Du, {\it Fast solution methods for space-fractional diffusion equations}, J. Comput. Appl. Math., 255 (2014), pp. 376-383. · Zbl 1291.65324
[80] E. Zeidler, {\it Nonlinear Functional Analysis and Its Applications. III. Variational Methods and Optimization}, Springer-Verlag, New York, 1985. · Zbl 0583.47051
[81] J. Zhang, Z. Wei, and L. Xiao, {\it Adaptive fractional-order multi-scale method for image denoising}, J. Math. Imaging Vision, 43 (2012), pp. 39-49. · Zbl 1255.68278
[82] J. Zhang, K. Chen, and B. Yu, {\it An iterative Lagrange multiplier method for constrained total-variation-based image denoising}, SIAM J. Numer. Anal., 50 (2012), pp. 983-1003. · Zbl 06070606
[83] Y. Zhang, Y. F. Pu, J. R. Hu, and J. L. Zhou, {\it A class of fractional-order variational image inpainting models}, Appl. Math. Inform. Sci, 6 (2012), pp. 299-306.
[84] W. Zhu and T. F. Chan, {\it Image denoising using mean curvature of image surface}, SIAM J. Imaging Sci., 5 (2012), pp. 1-32. · Zbl 1258.94021
[85] Z. Y. Zhu, G. G. Li, and C. J. Cheng, {\it A numerical method for fractional integral with applications}, Appl. Math. Mech., 24 (2003), pp. 373-384. · Zbl 1142.74390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.