×

Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. (English) Zbl 1524.65126

Author’s abstract: For the discrete linear systems resulted from the discretization of the one-dimensional anisotropic spatial fractional diffusion equations of variable coefficients with the shifted finite-difference formulas of the Grünwald-Letnikov type, we propose a class of respectively scaled Hermitian and skew-Hermitian splitting iteration method and establish its asymptotic convergence theory. The corresponding induced matrix splitting preconditioner, through further replacements of the involved Toeplitz matrices with certain circulant matrices, leads to an economic variant that can be executed by fast Fourier transforms. Both theoretical analysis and numerical implementations show that this fast respectively scaled Hermitian and skew-Hermitian splitting preconditioner can significantly improve the computational efficiency of the Krylov subspace iteration methods employed as effective linear solvers for the target discrete linear systems.

MSC:

65F10 Iterative numerical methods for linear systems
35R11 Fractional partial differential equations
65F08 Preconditioners for iterative methods
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs

Software:

Matlab
Full Text: DOI

References:

[1] PodlubnyI. Fractional differential equations (Mathematics in science and engineering). San Diego: Academic Press; 1999. · Zbl 0924.34008
[2] SamkoSG, KilbasAA, MarichevOI. Fractional integrals and derivatives: Theory and applications. Yverdon: Gordon and Breach Science Publishers; 1993. · Zbl 0818.26003
[3] CarrerasBA, LynchVE, ZaslavskyGM. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys Plasmas. 2001;8:5096-5103.
[4] KirchnerJW, FengX‐H, NealC. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature. 2000;403:524-527.
[5] KreerM, KızılersüA, ThomasAW. Fractional Poisson processes and their representation by infinite systems of ordinary differential equations. Stat Probab Lett. 2014;84:27-32. · Zbl 1302.60068
[6] MaginRL. Fractional calculus in bioengineering. Danbury, CT: Begell House Publishers; 2006.
[7] MetzlerR, KlafterJ. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys Reports. 2000;339:1-77. · Zbl 0984.82032
[8] RabertoM, ScalasE, MainardiF. Waiting‐times and returns in high‐frequency financial data: An empirical study. Phys A Stat Mech Appl. 2002;314:749-755. · Zbl 1001.91033
[9] RazminiaK, RazminiaA, BaleanuD. Investigation of the fractional diffusion equation based on generalized integral quadrature technique. Appl Math Modell. 2015;39:86-98.
[10] SabatelliL, KeatingS, DudleyJ, RichmondP. Waiting time distributions in financial markets. Eur Phys J B Condens Matter Phys. 2002;27:273-275.
[11] UpadhyayRK, MondalA. Dynamics of fractional order modified Morris‐Lecar neural model. Netw Biol. 2015;5:113-136.
[12] ZaslavskyGM. Chaos, fractional kinetics, and anomalous transport. Phys Reports. 2002;371:461-580. · Zbl 0999.82053
[13] MeerschaertMM, TadjeranC. Finite difference approximations for fractional advection‐dispersion flow equations. J Comput Appl Math. 2004;172:65-77. · Zbl 1126.76346
[14] WangH, WangK‐X, SircarT. A direct \(\mathcal{O}(N \log^2 N)\) finite difference method for fractional diffusion equations. J Comput Phys. 2010;229:8095-8104. · Zbl 1198.65176
[15] GolubGH, Van LoanCF. Matrix computations. 3rd ed.Baltimore: The Johns Hopkins University Press; 1996. · Zbl 0865.65009
[16] MeerschaertMM, TadjeranC. Finite difference approximations for two‐sided space‐fractional partial differential equations. Appl Numer Math. 2006;56:80-90. · Zbl 1086.65087
[17] MeerschaertMM, SchefflerH‐P, TadjeranC. Finite difference methods for two‐dimensional fractional dispersion equation. J Comput Phys. 2006;211:249-261. · Zbl 1085.65080
[18] PanJ‐Y, KeR‐H, NgMK, SunH‐W. Preconditioning techniques for diagonal‐times‐Toeplitz matrices in fractional diffusion equations. SIAM J Sci Comput. 2014;36:A2698-A2719. · Zbl 1314.65112
[19] BaiZ‐Z. Motivations and realizations of Krylov subspace methods for large sparse linear systems. J Comput Appl Math. 2015;283:71-78. · Zbl 1311.65032
[20] BaiZ‐Z. On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J Comput Appl Math. 2003;154:195-214. · Zbl 1022.65035
[21] BaiZ‐Z. An algebraic convergence theorem for the multiplicative Schwarz iteration. Numer Math J Chinese Univ (English Ser). 2003;12:179-182.
[22] BaiZ‐Z. Several splittings for non‐Hermitian linear systems. Sci China Ser A: Math. 2008;51:1339-1348. · Zbl 1168.65014
[23] BaiZ‐Z, GolubGH, NgMK. Hermitian and skew‐Hermitian splitting methods for non‐Hermitian positive definite linear systems. SIAM J Matrix Anal Appl. 2003;24:603-626. · Zbl 1036.65032
[24] StrangG. A proposal for Toeplitz matrix calculations. Stud Appl Math. 1986;74:171-176. · Zbl 0621.65025
[25] BaiZ‐Z, LuK‐Y, PanJ‐Y. Diagonal and Toeplitz splitting iteration methods for diagonal‐plus‐Toeplitz linear systems from spatial fractional diffusion equations. Numer Linear Algebra Appl. 2017;24(e2093):1-15. · Zbl 1463.65040
[26] HuckleTK. Circulant and skewcirculant matrices for solving Toeplitz matrix problems. SIAM J Matrix Anal Appl. 1992;13:767-777. · Zbl 0756.65047
[27] LynessJN, SørevikT. Four‐dimensional lattice rules generated by skew‐circulant matrices. Math. Comput. 2004;73:279-295. · Zbl 1035.65026
[28] VargaRS. Matrix iterative analysis. Englewood Cliffs, NJ: Prentice‐Hall; 1962. · Zbl 0133.08602
[29] BermanA, PlemmonsRJ. Nonnegative matrices in the mathematical sciences (Revised reprint of the 1979 original). Philadelphia, PA: SIAM; 1994. · Zbl 0815.15016
[30] VargaRS. Geršgorin and his circles. Berlin: Springer‐Verlag; 2004. · Zbl 1057.15023
[31] BaiZ‐Z, WangD‐R. Generalized matrix multisplitting relaxation methods and their convergence. Numer Math J Chinese Univ (English Ser). 1993;2:87-100. · Zbl 0849.65016
[32] HuJ‐G. The estimate of ‖M^−1N‖_∞ and the optimally scaled matrix. J Comput Math. 1984;2:122-129. · Zbl 0559.65026
[33] BaiZ‐Z, GolubGH, NgMK. On inexact Hermitian and skew‐Hermitian splitting methods for non‐Hermitian positive definite linear systems. Linear Algebra Appl. 2008;428:413-440. · Zbl 1135.65016
[34] BitmeadRR, AndersonBDO. Asymptotically fast solution of Toeplitz and related systems of linear equations. Linear Algebra Appl. 1980;34:103-116. · Zbl 0458.65018
[35] BrentRP, GustavsonFG, YunDYY. Fast solution of Toeplitz systems of equations and computation of Padé approximants. J Algoritm. 1980;1:259-295. · Zbl 0475.65018
[36] AmmarGS, GraggWB. Superfast solution of real positive definite Toeplitz systems. SIAM J Matrix Anal Appl. 1988;9:61-76. · Zbl 0658.65022
[37] BaiZ‐Z, HadjidimosA. Optimization of extrapolated Cayley transform with non‐Hermitian positive definite matrix. Linear Algebra Appl. 2014;463:322-339. · Zbl 1300.65020
[38] deHoogFR. A new algorithm for solving Toeplitz systems of equations. Linear Algebra Appl. 1987;88/89:123-138. · Zbl 0621.65014
[39] FriedlanderB, MorfM, KailathT, LjungL. New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices. Linear Algebra Appl. 1979;27:31-60. · Zbl 0414.15005
[40] KailathT, KungS‐Y, MorfM. Displacement ranks of matrices and linear equations. J Math Anal Appl. 1979;68:395-407. · Zbl 0433.15001
[41] SextonHB, ShensaMJ, SpeiserJ. Remarks on a displacement‐rank inversion method for Toeplitz systems. Linear Algebra Appl. 1982;45:127-130. · Zbl 0493.65012
[42] LeiS‐L, SunH‐W. A circulant preconditioner for fractional diffusion equations. J Comput Phys. 2013;242:715-725. · Zbl 1297.65095
[43] WangH, DuN. A superfast‐preconditioned iterative method for steady‐state space‐fractional diffusion equations. J Comput Phys. 2013;240:49-57. · Zbl 1287.65100
[44] JiangY‐J, XuX‐J. Multigrid methods for space fractional partial differential equations. J Comput Phys. 2015;302:374-392. · Zbl 1349.65620
[45] ZhaoX, HuX‐Z, CaiW, KarniadakisGE. Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng. 2017;325:56-76. · Zbl 1439.65091
[46] ChanRH, NgMK. Conjugate gradient methods for Toeplitz systems. SIAM Rev.1996;38:427-482. · Zbl 0863.65013
[47] NgMK. Iterative methods for Toeplitz systems. New York: Oxford University Press; 2004. · Zbl 1059.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.