×

Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. (English) Zbl 1513.65054

Summary: In this paper, we analyze the spectra of the preconditioned matrices arising from discretized multi-dimensional Riesz spatial fractional diffusion equations. The finite difference method is employed to approximate the multi-dimensional Riesz fractional derivatives, which generates symmetric positive definite ill-conditioned multi-level Toeplitz matrices. The preconditioned conjugate gradient method with a preconditioner based on the sine transform is employed to solve the resulting linear system. Theoretically, we prove that the spectra of the preconditioned matrices are uniformly bounded in the open interval \((\frac{1}{2},\frac{3}{2})\) and thus the preconditioned conjugate gradient method converges linearly within an iteration number independent of the discretization step-size. Moreover, the proposed method can be extended to handle ill-conditioned multi-level Toeplitz matrices whose blocks are generated by functions with zeros of fractional order. Our theoretical results fill in a vacancy in the literature. Numerical examples are presented to show the convergence performance of the proposed preconditioner that is better than other preconditioners.

MSC:

65F08 Preconditioners for iterative methods
65N06 Finite difference methods for boundary value problems involving PDEs
35R11 Fractional partial differential equations

References:

[1] N. BARAKITIS, S. E. EKSTRÖM, AND P. VASSALOS, Preconditioners for fractional diffusion equations based on the spectral symbol, arXiv:1912.13304, 2019.
[2] F. DI BENEDETTO, Preconditioning of block Toeplitz matrices by sine transforms, SIAM J. Sci. Comput. 18 (1997), 499-515. · Zbl 0871.65032
[3] F. DI BENEDETTO, G. FIORENTINO, AND S. SERRA CAPIZZANO, CG preconditioning for Toeplitz matrices, Comput. Math. Appl. 25 (1993), 35-45. · Zbl 0782.65063
[4] D. BINI AND F. DI BENEDETTO, A new preconditioner for the parallel solution of positive definite Toeplitz systems, in: Proceedings, 2nd SPAA Conference, Crete, Greece, July 1990, 220-223.
[5] D. BINI AND M. CAPOVANI, Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl. 52/53 (1983), 99-126. · Zbl 0549.15005
[6] A. BÖTTCHER AND S. GRUDSKY, On the condition numbers of large semi-definite Toeplitz matrices, Linear Algebra Appl. 279 (1998), 285-301. · Zbl 0934.15005
[7] C. Ç ELIK AND M. DUMAN, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys. 231 (2012), 1743-1750. · Zbl 1242.65157
[8] R. H. CHAN, Toeplitz preconditioner for Toeplitz system with nonnegative generating func-tion, IMA J. Numer. Anal. 11 (1991), 333-345. · Zbl 0737.65022
[9] R. H. CHAN, Q. S. CHANG, AND H. W. SUN, Multigrid method for ill-conditioned sym-metric Toeplitz systems, SIAM J. Sci. Comput. 19 (1998), 516-529. · Zbl 0916.65029
[10] R. H. CHAN, A. M. YIP, AND M. K. NG, The best circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Numer. Anal. 38 (2000), 876-896. · Zbl 0978.65035
[11] W. K. CHING, Iterative Methods for Queuing and Manufacturing Systems, Springer-Verlag, 2001. · Zbl 0976.60086
[12] H. F. DING AND Y. X. ZHANG, New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl. 63 (2012), 1135-1146. · Zbl 1247.65135
[13] M. DONATELLI, M. MAZZA, AND S. SERRA-CAPIZZANO, Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys. 307 (2016), 262-279. · Zbl 1352.65305
[14] G. FIORENTINO AND S. SERRA CAPIZZANO, Multigrid methods for Toeplitz matrices, Cal-colo. 28 (1991), 283-305. · Zbl 0778.65021
[15] U. GRENANDER AND G. SZEGÖ, Toeplitz Forms and Their Applications, 2nd ed, Chelsea Pub. Co., 1984. · Zbl 0611.47018
[16] Z. P. HAO, Z. Z. SUN, AND W. R. CAO, A fourth-order approximation of fractional deriva-tives with its applications, J. Comput. Phys. 281 (2015), 787-805. · Zbl 1352.65238
[17] R. HILFER, Applications of Fractional Calculus in Physics, World Scientific, 2000. · Zbl 0998.26002
[18] R. A. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge University Press, 2012.
[19] S. L. LEI AND H. W. SUN, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys. 242 (2013), 715-725. · Zbl 1297.65095
[20] F. R. LIN, S. W. YANG, AND X. Q. JIN, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys. 256 (2014), 109-117. · Zbl 1349.65314
[21] X. L. LIN, M. K. NG, AND H. W. SUN, A splitting preconditioner for Toeplitz-like linear system arising from fractional diffusion equations, SIAM J. Matrix Anal. Appl. 38 (2017), 1580-1614. · Zbl 1381.65030
[22] X. LU, Z. W. FANG, AND H. W. SUN, Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations, J. Appl. Math. Comput. 66 (2021), 673-700. · Zbl 1475.65015
[23] M. M. MEERSCHAERT AND C. TADJERAN, Finite difference approximations for fractional advection-dispersion flows equations, J. Comput. Appl. Math. 172 (2004), 209-219.
[24] D. NOUTSOS, S. SERRA CAPIZZANO, AND P. VASSALOS, Essential spectral equivalence via multiple step preconditioning and applications to ill conditioned Toeplitz matrices, Linear Algebra Appl. 491 (2016), 276-291. · Zbl 1391.65071
[25] H. K. PANG AND H. W. SUN, Fast numerical contour integral method for fractional diffu-sion equations, J. Sci. Comput. 66 (2016), 41-66. · Zbl 1351.65058
[26] J. PESTANA, Preconditioners for symmetrized Toeplitz and multi-level Toeplitz matrices, SIAM J. Matrix. Anal. Appl. 44 (2019), 870-887. · Zbl 1420.65024
[27] I. PODLUBNY, Fractional Differential Equations, Academic Press, 1999. · Zbl 0918.34010
[28] D. POTTS AND G. STEIDL, Preconditioners for ill-conditioned Toeplitz Matrices, BIT. 39 (1999), 513-533. · Zbl 0938.65067
[29] S. SERRA CAPIZZANO, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra Appl. 270 (1998), 109-129. · Zbl 0892.15014
[30] S. SERRA CAPIZZANO, Superlinear PCG methods for symmetric Toeplitz systems, Math. Comput. 68 (1999), 793-803. · Zbl 1043.65066
[31] H. W. SUN, X. Q. JIN, AND Q. S. CHANG, Convergence of the multigrid method for ill-conditioned block Toeplitz systems, BIT. 41 (2001), 179-190. · Zbl 0991.65033
[32] V. E. TARASOV, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media Higher Education Press, 2010. · Zbl 1214.81004
[33] Q. Q. YANG, F. W. LIU, AND I. W. TURNER, Numerical methods for fractional partial dif-ferential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010), 200-218. · Zbl 1185.65200
[34] H. WANG, K. X. WANG, AND T. SIRCAR, A direct O(N log 2 N ) finite difference method for fractional diffusion equations, J. Comput. Phys. 229 (2010), 8095-8104. · Zbl 1198.65176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.