×

Exact first-order effect of interactions on the ground-state energy of harmonically-confined fermions. (English) Zbl 07917648

Summary: We consider a system of \(N\) spinless fermions, interacting with each other via a power-law interaction \(\epsilon/r^n\), and trapped in an external harmonic potential \(V(r) = r^2/2\), in \(d = 1, 2, 3\) dimensions. For any \(0 < n < d+2\), we obtain the ground-state energy \(E_N\) of the system perturbatively in \(\epsilon\), \(E_N = E_N^{(0)} + \epsilon E_N^{(1)} + O(\epsilon^2)\). We calculate \(E_N^{(1)}\) exactly, assuming that \(N\) is such that the “outer shell” is filled. For the case of \(n=1\) (corresponding to a Coulomb interaction for \(d = 3\)), we extract the \(N \gg 1\) behavior of \(E_N^{(1)}\), focusing on the corrections to the exchange term with respect to the leading-order term that is predicted from the local density approximation applied to the Thomas-Fermi approximate density distribution. The leading correction contains a logarithmic divergence, and is of particular importance in the context of density functional theory. We also study the effect of the interactions on the fermions’ spatial density. Finally, we find that our result for \(E_N^{(1)}\) significantly simplifies in the case where \(n\) is even.

MSC:

81Vxx Applications of quantum theory to specific physical systems
82-XX Statistical mechanics, structure of matter
60Bxx Probability theory on algebraic and topological structures

References:

[1] I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008), doi:10.1103/RevModPhys.80.885. · doi:10.1103/RevModPhys.80.885
[2] S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80, 1215 (2008), doi:10.1103/RevModPhys.80.1215. · doi:10.1103/RevModPhys.80.1215
[3] G. D. Mahan, Many particle physics, Plenum, New York, USA, ISBN 9780306404115 (1981).
[4] Y. Castin, Basic theory tools for degenerate Fermi gases, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0612613. · doi:10.48550/arXiv.cond-mat/0612613
[5] Y. Castin, Simple theoretical tools for low dimensional bose gas, J. Phys. IV 116, 89 (2004), doi:10.1051/jp4:2004116004. · doi:10.1051/jp4:2004116004
[6] L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V. Ramasesh, W. S. Bakr, T. Lompe and M. W. Zwierlein, Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett. 114, 193001 (2015), doi:10.1103/PhysRevLett.114.193001. · doi:10.1103/PhysRevLett.114.193001
[7] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce and S. Kuhr, Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys. 11, 738 (2015), doi:10.1038/nphys3403. · doi:10.1038/nphys3403
[8] M. F. Parsons, F. Huber, A. Mazurenko, C. S. Chiu, W. Setiawan, K. Wooley-Brown, S. Blatt and M. Greiner, Site-resolved imaging of fermionic 6 Li in an Optical Lattice, Phys. Rev. Lett. 114, 213002 (2015), doi:10.1103/PhysRevLett.114.213002. · doi:10.1103/PhysRevLett.114.213002
[9] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck and M. W. Zwierlein, Homogeneous atomic Fermi gases, Phys. Rev. Lett. 118, 123401 (2017), doi:10.1103/PhysRevLett.118.123401. · doi:10.1103/PhysRevLett.118.123401
[10] M. Holten, L. Bayha, K. Subramanian, C. Heintze, P. M. Preiss and S. Jochim, Observation of Pauli crystals, Phys. Rev. Lett. 126, 020401 (2021), doi:10.1103/PhysRevLett.126.020401. · doi:10.1103/PhysRevLett.126.020401
[11] N. Defenu, T. Donner, T. Macrì, G. Pagano, S. Ruffo and A. Trombettoni, Long-range interacting quantum systems, Rev. Mod. Phys. 95, 035002 (2023), doi:10.1103/RevModPhys.95.035002. · doi:10.1103/RevModPhys.95.035002
[12] J. Dubail, J.-M. Stéphan, J. Viti and P. Calabrese, Conformal field theory for inhomogeneous one-dimensional quantum systems: the example of non-interacting Fermi gases, SciPost Phys. 2, 002 (2017), doi:10.21468/SciPostPhys.2.1.002. · doi:10.21468/SciPostPhys.2.1.002
[13] W. Kohn and A. E. Mattsson, Edge electron gas, Phys. Rev. Lett. 81, 3487 (1998), doi:10.1103/PhysRevLett.81.3487. · doi:10.1103/PhysRevLett.81.3487
[14] V. Eisler, Universality in the full counting statistics of trapped fermions, Phys. Rev. Lett. 111, 080402 (2013), doi:10.1103/PhysRevLett.111.080402. · doi:10.1103/PhysRevLett.111.080402
[15] D. S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr, Noninteracting fermions at finite temperature in a d-dimensional trap: Universal correlations, Phys. Rev. A 94, 063622 (2016), doi:10.1103/PhysRevA.94.063622. · doi:10.1103/PhysRevA.94.063622
[16] O. Macchi, The coincidence approach to stochastic point processes, Adv. Appl. Probab. 7, 83 (1975), doi:10.2307/1425855. · Zbl 0366.60081 · doi:10.2307/1425855
[17] K. Johansson, Random matrices and determinantal processes, in Lecture notes of the les houches summer school, Elsevier Sci., 83, 1 (2006), doi:10.1016/S0924-8099(06)80038-7. · Zbl 1411.60144 · doi:10.1016/S0924-8099(06)80038-7
[18] A. Borodin, Determinantal point processes, in The Oxford handbook of random matrix the-ory, Oxford University Press, Oxford, UK, ISBN 9780199574001 (2011).
[19] D. S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr, Noninteracting fermions in a trap and random matrix theory, J. Phys. A: Math. Theor. 52, 144006 (2019), doi:10.1088/1751-8121/ab098d. · Zbl 1509.81635 · doi:10.1088/1751-8121/ab098d
[20] B. Lacroix-A-Chez-Toine, S. N. Majumdar and G. Schehr, Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: Exact results for the en-tanglement entropy and number variance, Phys. Rev. A 99, 021602 (2019), doi:10.1103/PhysRevA.99.021602. · doi:10.1103/PhysRevA.99.021602
[21] M. Kulkarni, S. N. Majumdar and G. Schehr, Multilayered density profile for noninter-acting fermions in a rotating two-dimensional trap, Phys. Rev. A 103, 033321 (2021), doi:10.1103/PhysRevA.103.033321. · doi:10.1103/PhysRevA.103.033321
[22] B. Lacroix-A-Chez-Toine, J. A. Monroy GarzÓn, C. S. Hidalgo Calva, I. Pérez Castillo, A. Kundu, S. N. Majumdar and G. Schehr, Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble, Phys. Rev. E 100, 012137 (2019), doi:10.1103/PhysRevE.100.012137. · doi:10.1103/PhysRevE.100.012137
[23] N. R. Smith, P. Le Doussal, S. N. Majumdar and G. Schehr, Counting statistics for noninteracting fermions in a rotating trap, Phys. Rev. A 105, 043315 (2022), doi:10.1103/PhysRevA.105.043315. · doi:10.1103/PhysRevA.105.043315
[24] M. Kulkarni, P. Le Doussal, S. N. Majumdar and G. Schehr, Density profile of noninteracting fermions in a rotating two-dimensional trap at finite temperature, Phys. Rev. A 107, 023302 (2023), doi:10.1103/PhysRevA.107.023302. · doi:10.1103/PhysRevA.107.023302
[25] B. Sutherland, Beautiful models, World Scientific, Singapore, ISBN 9789812388599 (2004), doi:10.1142/5552. · doi:10.1142/5552
[26] F. Calogero, One-dimensional many-body problems with pair interactions whose exact ground-state wave function is of product type, Lett. al Nuovo Cimento 13, 507 (1975), doi:10.1007/BF02753857. · doi:10.1007/BF02753857
[27] N. Smith, P. Le Doussal, S. Majumdar and G. Schehr, Full counting statistics for interacting trapped fermions, SciPost Phys. 11, 110 (2021), doi:10.21468/SciPostPhys.11.6.110. · doi:10.21468/SciPostPhys.11.6.110
[28] Argaman, N., Makov, G., Density functional theory: An introduction, Am. J. Phys. 68, 69-79 (2000), doi:10.1119/1.19375. · Zbl 1219.81013 · doi:10.1119/1.19375
[29] J. Schwinger, Thomas-Fermi model: The leading correction, Phys. Rev. A 22, 1827 (1980), doi:10.1103/PhysRevA.22.1827. · doi:10.1103/PhysRevA.22.1827
[30] J. Schwinger, Thomas-Fermi model: The second correction, Phys. Rev. A 24, 2353 (1981), doi:10.1103/PhysRevA.24.2353. · doi:10.1103/PhysRevA.24.2353
[31] B.-G. Englert and J. Schwinger, Atomic-binding-energy oscillations, Phys. Rev. A 32, 47 (1985), doi:10.1103/PhysRevA.32.47. · doi:10.1103/PhysRevA.32.47
[32] C. Fefferman and L. A. Seco, On the Dirac and Schwinger corrections to the ground-state energy of an atom, Adv. Math. 107, 1 (1994), doi:10.1006/aima.1994.1060. · Zbl 0820.35113 · doi:10.1006/aima.1994.1060
[33] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation ef-fects, Phys. Rev. 140, A1133 (1965), doi:10.1103/PhysRev.140.A1133. · doi:10.1103/PhysRev.140.A1133
[34] P. Elliott and K. Burke, Non-empirical derivation of the parameter in the B88 exchange functional, Can. J. Chem. 87, 1485 (2009), doi:10.1139/V09-095. · doi:10.1139/V09-095
[35] K. Burke, A. Cancio, T. Gould and S. Pittalis, Locality of correlation in density functional theory, J. Chem. Phys. 145, 054112 (2016), doi:10.1063/1.4959126. · doi:10.1063/1.4959126
[36] N. Argaman, J. Redd, A. C. Cancio and K. Burke, Leading correction to the local den-sity approximation for exchange in large-Z atoms, Phys. Rev. Lett. 129, 153001 (2022), doi:10.1103/PhysRevLett.129.153001. · doi:10.1103/PhysRevLett.129.153001
[37] H. Kunz and R. Rueedi, Atoms and quantum dots with a large number of electrons: The ground-state energy, Phys. Rev. A 81, 032122 (2010), doi:10.1103/PhysRevA.81.032122. · doi:10.1103/PhysRevA.81.032122
[38] L. Kleinman and S. Lee, Gradient expansion of the exchange-energy density func-tional: Effect of taking limits in the wrong order, Phys. Rev. B 37, 4634 (1988), doi:10.1103/PhysRevB.37.4634. · doi:10.1103/PhysRevB.37.4634
[39] R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87, 897 (2015), doi:10.1103/RevModPhys.87.897. · doi:10.1103/RevModPhys.87.897
[40] N. Argaman, P. Le Doussal, N. R. Smith, In preparation.
[41] I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, series and products, 5th ed., Academic Press, London, UK, ISBN 9780122947605 (1980), doi:10.1016/C2013-0-10754-4. · Zbl 0521.33001 · doi:10.1016/C2013-0-10754-4
[42] P. J. Forrester, Log-gases and random matrices, Princeton University Press, Princeton, USA, ISBN 9780691128290 (2010), doi:10.1515/9781400835416. · Zbl 1217.82003 · doi:10.1515/9781400835416
[43] M. L. Mehta, Random matrices, Academic Press, London, UK, ISBN 9781483299891 (2004). · Zbl 1107.15019
[44] J. B. Fo and E. S. C. Neto, The Mehler formula and the Green function of the multi-dimensional isotropic harmonic oscillator, J. Phys. A: Math. Gen. 9, 683 (1976), doi:10.1088/0305-4470/9/5/004. · Zbl 0322.35023 · doi:10.1088/0305-4470/9/5/004
[45] J. J. Redd, A. C. Cancio, N. Argaman and K. Burke, Investigations of the exchange energy of neutral atoms in the large-Z limit, J. Chem. Phys. 160, 044101 (2024), doi:10.1063/5.0179278. · doi:10.1063/5.0179278
[46] F. Bloch, Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leit-fähigkeit, Z. Phys. 57, 545 (1929), doi:10.1007/BF01340281. · JFM 55.0546.04 · doi:10.1007/BF01340281
[47] P. A. M. Dirac, Note on exchange phenomena in the Thomas atom, Math. Proc. Camb. Philos. Soc. 26, 376 (1930), doi:10.1017/S0305004100016108. · JFM 56.0751.04 · doi:10.1017/S0305004100016108
[48] J. G. Conlon, Semi-classical limit theorems for Hartree-Fock theory, Commun. Math. Phys. 88, 133 (1983), doi:10.1007/BF01206884. · Zbl 0539.47028 · doi:10.1007/BF01206884
[49] R. Pino, Exact solution of the Thomas-Fermi two-dimensional N -electron parabolic quantum dot, Phys. Rev. B 58, 4644 (1998), doi:10.1103/PhysRevB.58.4644. · doi:10.1103/PhysRevB.58.4644
[50] Y. N. Ovchinnikov, A. Halder and V. V. Kresin, Flat Thomas-Fermi artificial atoms, Euro-phys. Lett. 107, 37001 (2014), doi:10.1209/0295-5075/107/37001. · doi:10.1209/0295-5075/107/37001
[51] Wolfram Research, Elliptic Integrals, http://functions.wolfram.com/EllipticIntegrals/. · Zbl 0429.65012
[52] P. Calabrese, M. Mintchev and E. Vicari, Entanglement entropy of one-dimensional gases, Phys. Rev. Lett. 107, 020601 (2011), doi:10.1103/PhysRevLett.107.020601. · doi:10.1103/PhysRevLett.107.020601
[53] P. Calabrese, M. Mintchev and E. Vicari, Exact relations between particle fluctuations and entanglement in Fermi gases, Europhys. Lett. 98, 20003 (2012), doi:10.1209/0295-5075/98/20003. · doi:10.1209/0295-5075/98/20003
[54] D. S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr, Statistics of the maximal distance and momentum in a trapped Fermi gas at low temperature, J. Stat. Mech.: Theory Exp. 063301 (2017), doi:10.1088/1742-5468/aa6dda. · Zbl 1457.82392 · doi:10.1088/1742-5468/aa6dda
[55] N. R. Smith, P. Le Doussal, S. N. Majumdar and G. Schehr, Counting statistics for non-interacting fermions in a d-dimensional potential, Phys. Rev. E 103, L030105 (2021), doi:10.1103/PhysRevE.103.L030105. · doi:10.1103/PhysRevE.103.L030105
[56] N. R. Smith, P. Le Doussal, S. N. Majumdar, G. Schehr, Full counting statistics for interact-ing trapped fermions, SciPost Phys. 11, 110 (2021), doi:10.21468/SciPostPhys.11.6.110. · doi:10.21468/SciPostPhys.11.6.110
[57] N. Benedikter, M. Porta, B. Schlein and R. Seiringer, Correlation energy of a weakly in-teracting Fermi gas with large interaction potential, Arch. Ration. Mech. Anal. 247, 65 (2023), doi:10.1007/s00205-023-01893-6. · Zbl 1530.81162 · doi:10.1007/s00205-023-01893-6
[58] B. De Bruyne, P. Le Doussal, S. N. Majumdar, G. Schehr, Linear statistics for Coulomb gases: higher order cumulants, J. Phys. A: Math. Theor. 57, 155002 (2024), doi:10.1088/1751-8121/ad329f. · Zbl 07871201 · doi:10.1088/1751-8121/ad329f
[59] A. Valov, B. Meerson and P. V. Sasorov, Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices, J. Phys. A: Math. Theor. 57, 065001 (2024), doi:10.1088/1751-8121/ad1e1a. · Zbl 07809968 · doi:10.1088/1751-8121/ad1e1a
[60] Wolfram Research, PolyLog, https://functions.wolfram.com/ ZetaFunctionsandPolylogarithms/PolyLog/06/ShowAll.html.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.