×

Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices. (English) Zbl 07809968

Summary: We evaluate, in the large-\(N\) limit, the complete probability distribution \(\mathcal{P}(A, m)\) of the values \(A\) of the sum \(\sum^N_{i = 1}|\lambda_i|^m\), where \(\lambda_i\) (\(i = 1, 2, \dots, n\)) are the eigenvalues of a Gaussian random matrix, and \(m\) is a positive real number. Combining the Coulomb gas method with numerical simulations using a matrix variant of the Wang-Landau algorithm, we found that, in the limit of \(N\to\infty\), the rate function of \(\mathcal{P}(A, m)\) exhibits phase transitions of different characters. The phase diagram of the system on the \((A, m)\) plane is surprisingly rich, as it includes three regions: (i) a region with a single-interval support of the optimal spectrum of eigenvalues, (ii) a region emerging for \(m < 2\) where the optimal spectrum splits into two separate intervals, and (iii) a region emerging for \(m > 2\) where the maximum or minimum eigenvalue ‘evaporates’ from the rest of eigenvalues and dominates the statistics of \(A\). The phase transition between regions (i) and (iii) is of second order. Analytical arguments and numerical simulations strongly suggest that the phase transition between regions (i) and (ii) is of (in general) fractional order \(p = 1 + 1/|m-1|\), where \(0 < m < 2\). The transition becomes of infinite order in the special case of \(m = 1\), where we provide a more complete analytical and numerical description. Remarkably, the transition between regions (i) and (ii) for \(m \leqslant 1\) and the transition between regions (i) and (iii) for \(m > 2\) occur at the ground state of the Coulomb gas which corresponds to the Wigner’s semicircular distribution.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

References:

[1] Forrester, P., Log-Gases and Random Matrices (2010), Princeton University Press · Zbl 1217.82003
[2] Akemann, G.; Baik, J.; Di Francesco, P., The Oxford Handbook of Random Matrix Theory (2015), Oxford University Press · Zbl 1321.15005
[3] Potters, M.; Bouchaud, J-P, A First Course in Random Matrix Theory: For Physicists, Engineers and Data Scientists (2020), Cambridge University Press
[4] Cunden, F. D.; Mezzadri, F.; Vivo, P., J. Phys. A: Math. Theor., 48 (2015) · Zbl 1329.82120 · doi:10.1088/1751-8113/48/31/315204
[5] Cunden, F. D.; Vivo, P., Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.070202
[6] Cunden, F. D.; Facchi, P.; Vivo, P., J. Phys. A: Math. Theor., 49 (2016) · Zbl 1346.82013 · doi:10.1088/1751-8113/49/13/135202
[7] Grabsch, A.; Texier, C., J. Phys. A: Math. Theor., 49 (2016) · Zbl 1354.82023 · doi:10.1088/1751-8113/49/46/465002
[8] Dean, D. S.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.81635 · doi:10.1088/1751-8121/ab098d
[9] Smith, N. R.; LeDoussal, P.; Majumdar, S. N.; Schehr, G., SciPost Phys., 11, 110 (2021) · doi:10.21468/SciPostPhys.11.6.110
[10] Mehta, M. L.; Dyson, F. J., J. Math. Phys., 4, 713 (1963) · Zbl 0133.45202 · doi:10.1063/1.1704009
[11] Beenakker, C. W J., Phys. Rev. Lett., 70, 1155 (1993) · doi:10.1103/PhysRevLett.70.1155
[12] Beenakker, C. W J., Phys. Rev. B, 47 (1993) · doi:10.1103/PhysRevB.47.15763
[13] Politzer, H. D., Phys. Rev. B, 40 (1989) · doi:10.1103/PhysRevB.40.11917
[14] Chen, Y.; Manning, S. M., J. Phys.: Condens. Matter, 6, 3039 (1994) · doi:10.1088/0953-8984/6/16/009
[15] Baker, T. H.; Forrester, P. J., J. Stat. Phys., 88, 1371 (1997) · Zbl 0939.82020 · doi:10.1007/BF02732439
[16] Soshnikov, A., Ann. Prob., 28, 1353 (2000) · Zbl 1021.60018 · doi:10.1214/aop/1019160338
[17] Lytova, A.; Pastur, L., Ann. Prob., 37, 1778 (2009) · Zbl 1180.15029 · doi:10.1214/09-AOP452
[18] Basor, E. L.; Tracy, C. A., J. Stat. Phys., 73, 415 (1993) · Zbl 1102.82336 · doi:10.1007/BF01052770
[19] Pastur, L., J. Math. Phys., 47 (2006) · Zbl 1112.82022 · doi:10.1063/1.2356796
[20] Johansson, K., Duke Math. J., 91, 151 (1998) · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6
[21] Costin, O.; Lebowitz, J. L., Phys. Rev. Lett., 75, 69 (1995) · doi:10.1103/PhysRevLett.75.69
[22] Forrester, P. J.; Lebowitz, J. L., J. Stat. Phys., 157, 60 (2014) · Zbl 1307.60013 · doi:10.1007/s10955-014-1071-2
[23] Grela, J.; Majumdar, S. N.; Schehr, G., Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.130601
[24] Texier, C.; Majumdar, S. N., Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.250602
[25] Dyson, F. J., J. Math. Phys., 3, 140 (1962) · Zbl 0105.41604 · doi:10.1063/1.1703773
[26] Dean, D. S.; Majumdar, S. N., Phys. Rev. E, 77 (2008) · doi:10.1103/PhysRevE.77.041108
[27] Wigner, E. P., Math. Proc. Camb. Phil. Soc., 47, 790-8 (1951) · Zbl 0044.44203 · doi:10.1017/S0305004100027237
[28] Cunden, F. D.; Maltsev, A.; Mezzadri, F., Phys. Rev. E, 91 (2015) · doi:10.1103/PhysRevE.91.060105
[29] Cunden, F.; Mezzadri, F.; Vivo, P., J. Stat. Phys., 164, 1062 (2016) · Zbl 1364.82062 · doi:10.1007/s10955-016-1577-x
[30] Grabsch, A., J. Phys. A: Math. Theor., 55 (2022) · Zbl 1507.82065 · doi:10.1088/1751-8121/ac52e3
[31] Grabsch, A.; Majumdar, S.; Texier, C., J. Stat. Phys., 167, 1 (2017) · Zbl 1376.82028 · doi:10.1007/s10955-017-1755-5
[32] Majumdar, S. N.; Schehr, G., J. Stat. Mech. (2014) · Zbl 1456.82019 · doi:10.1088/1742-5468/2014/01/P01012
[33] Majumdar, S. N.; Vergassola, M., Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.060601
[34] Saito, N.; Iba, Y.; Hukushima, K., Phys. Rev. E, 82 (2010) · doi:10.1103/PhysRevE.82.031142
[35] Wang, F.; Landau, D. P., Phys. Rev. Lett., 86, 2050 (2001) · doi:10.1103/PhysRevLett.86.2050
[36] Polyanin, A.; Manzhirov, A., Handbook of Integral Equations (2008), Chapman & Hall/CRC · Zbl 1154.45001
[37] Gautesen, A. K.; Olmstead, W. E., SIAM J. Math. Anal., 2, 293 (1971) · Zbl 0216.10202 · doi:10.1137/0502028
[38] Kosterlitz, J. M.; Thouless, D. J.; Jones, R. C., Phys. Rev. Lett., 36, 1217 (1976) · doi:10.1103/PhysRevLett.36.1217
[39] Nadal, C.; Majumdar, S.; Vergassola, M., J. Stat. Phys., 142, 403 (2011) · Zbl 1245.82021 · doi:10.1007/s10955-010-0108-4
[40] Agarwal, S.; Dhar, A.; Kulkarni, M.; Kundu, A.; Majumdar, S. N.; Mukamel, D.; Schehr, G., Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.100603
[41] Kumar, A.; Kulkarni, M.; Kundu, A., Phys. Rev. E, 102 (2020) · doi:10.1103/PhysRevE.102.032128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.