×

Statistics of the maximal distance and momentum in a trapped Fermi gas at low temperature. (English) Zbl 1457.82392

Summary: We consider \(N\) non-interacting fermions in an isotropic \(d\)-dimensional harmonic trap. We compute analytically the cumulative distribution of the maximal radial distance of the fermions from the trap center at zero temperature. While in \(d = 1\) the limiting distribution (in the large \(N\) limit), properly centered and scaled, converges to the squared Tracy-Widom distribution of the Gaussian unitary ensemble in random matrix theory, we show that for all \(d > 1\), the limiting distribution converges to the Gumbel law. These limiting forms turn out to be universal, i.e. independent of the details of the trapping potential for a large class of isotropic trapping potentials. We also study the position of the right-most fermion in a given direction in \(d\) dimensions and, in the case of a harmonic trap, the maximum momentum, and show that they obey similar Gumbel statistics. Finally, we generalize these results to low but finite temperature.

MSC:

82D05 Statistical mechanics of gases

References:

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.80 885 · doi:10.1103/RevModPhys.80.885
[2] Giorgini S, Pitaevski L P and Stringari S 2008 Rev. Mod. Phys.80 1215 · doi:10.1103/RevModPhys.80.1215
[3] Mahan G D 1981 Many Particle Physics (New York: Plenum)
[4] Castin Y 2006 Basic theory tools for degenerate Fermi gases Proc. Int. School of Physics Enrico Fermi (Varenna Summer School Enrico Fermi)(Ultra-Cold Fermi Gases vol 164) ed M Inguscio et al (Amsterdam: IOS Press)
[5] Kohn W and Mattsson A E 1998 Phys. Rev. Lett.81 3487 · doi:10.1103/PhysRevLett.81.3487
[6] Eisler V 2013 Phys. Rev. Lett.111 080402 · doi:10.1103/PhysRevLett.111.080402
[7] Marino R, Majumdar S N, Schehr G and Vivo P 2014 Phys. Rev. Lett.112 254101 · doi:10.1103/PhysRevLett.112.254101
[8] Dean D S, Le Doussal P, Majumdar S N and Schehr G 2015 Phys. Rev. Lett.114 110402 · doi:10.1103/PhysRevLett.114.110402
[9] Dean D S, Le Doussal P, Majumdar S N and Schehr G 2015 Europhys. Lett.112 60001 · doi:10.1209/0295-5075/112/60001
[10] Marino R, Majumdar S N, Schehr G and Vivo P 2016 Phys. Rev. E 94 032115 · doi:10.1103/PhysRevE.94.032115
[11] Dean D S, Le Doussal P, Majumdar S N and Schehr G 2016 Phys. Rev. A 94 063622 · doi:10.1103/physreva.94.063622
[12] Mehta M L 1991 Random Matrices (Boston: Academic) · Zbl 0780.60014
[13] Forrester P J 2010 Log-Gases and Random Matrices(London Mathematical Society Monographs) (Princeton, NJ: Princeton University Press) · Zbl 1217.82003
[14] Fyodorov Y V 2005 Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond(London Mathematical Society Lecture Note Series vol 322) p 31 · Zbl 1204.11151
[15] Tracy C A and Widom H 1994 Commun. Math. Phys.159 151 · Zbl 0789.35152 · doi:10.1007/BF02100489
[16] Gumbel E J 1958 Statistics of Extremes (New York: Columbia University Press) · Zbl 0086.34401
[17] Galambos J 1987 The Asymptotic Theory of Extreme Order Statistics (Malabar, FL: Krieger) · Zbl 0634.62044
[18] Ginibre J 1965 J. Math. Phys.6 440 · Zbl 0127.39304 · doi:10.1063/1.1704292
[19] Khoruzhenko B A and Sommers H J 2011 Non-Hermitian ensembles The Oxford Handbook of Random Matrix Theory ed G Akemann et al (Oxford: Oxford University Press) · Zbl 1236.15069
[20] Rider B and Sinclair D 2014 Ann. Appl. Probab.4 1621 · Zbl 1296.60009 · doi:10.1214/13-AAP958
[21] Rider B 2003 J. Phys. A: Math. Gen.36 3401 · Zbl 1039.60037 · doi:10.1088/0305-4470/36/12/331
[22] Cunden F D, Mezzadri F and Vivo P 2016 J. Stat. Phys.164 1062 · Zbl 1364.82062 · doi:10.1007/s10955-016-1577-x
[23] Chafaï D and Péché S 2014 J. Stat. Phys.156 368 · Zbl 1303.82013 · doi:10.1007/s10955-014-1007-x
[24] Kostlan E 1992 Linear Algebr. Appl.162-4 385 · Zbl 0748.15024 · doi:10.1016/0024-3795(92)90386-O
[25] Fyodorov Y V and Mehlig B 2002 Phys. Rev. E 66 045202 · doi:10.1103/PhysRevE.66.045202
[26] Johansson K 2006 Random Matrices and Determinantal Processes(Lecture Notes of the Les Houches Summer School vol 2005) ed A Bovier et al (Amsterdam: Elsevier) · Zbl 1411.60144
[27] Borodin A 2011 Determinantal point processes The Oxford Handbook of Random Matrix Theory ed G Akemann et al (Oxford: Oxford University Press) · Zbl 1238.60055
[28] Moshinsky M and Smirnov Y F 1996 The Harmonic Oscillator in Modern Physics(Contempory Concepts in Physics vol 9) (Amsterdam: Harwood Academic) · Zbl 0865.00015
[29] Nadal C and Majumdar S N 2009 Phys. Rev. E 79 061117 · doi:10.1103/PhysRevE.79.061117
[30] Wishart J 1928 Biometrica20 32 · doi:10.1093/biomet/20A.1-2.32
[31] Vivo P, Majumdar S N and Bohigas O 2007 J. Phys. A: Math. Theor.40 4317 · Zbl 1115.15019 · doi:10.1088/1751-8113/40/16/005
[32] Johannsson K 2000 Commun. Math. Phys.209 437 · Zbl 0969.15008 · doi:10.1007/s002200050027
[33] Johnstone I M 2001 Ann. Stat.29 295 · Zbl 1016.62078 · doi:10.1214/aos/1009210544
[34] Forrester P J 2006 Forum Math.18 711 · Zbl 1130.82311 · doi:10.1515/FORUM.2006.036
[35] Edelman A and La Croix M 2015 Random Matrices: Theory Appl.04 1550021 · Zbl 1330.15042 · doi:10.1142/S2010326315500215
[36] Bornemann F and La Croix M 2015 arXiv:1502.05946
[37] Dean D S and Majumdar S N 2008 Phys. Rev. E 77 041108 · doi:10.1103/PhysRevE.77.041108
[38] Johansson K 2007 Probab. Theor. Rel.138 75 · Zbl 1116.60020 · doi:10.1007/s00440-006-0012-7
[39] Le Doussal P, Majumdar S N and Schehr G 2016 Europhys. Lett.113 60004 · doi:10.1209/0295-5075/113/60004
[40] Torquato S, Scardicchio A and Zachary C E 2008 J. Stat. Mech. P11019 · Zbl 1456.82079 · doi:10.1088/1742-5468/2008/11/P11019
[41] Garcia-Garcia A M, Nishigaki S M and Verbaarschot J J M 2001 Phys. Rev. E 66 016132 · doi:10.1103/PhysRevE.66.016132
[42] Garcia-Garcia A M and Verbaarschot J J M 2000 Nucl. Phys. B 586 668 · Zbl 0979.82034 · doi:10.1016/S0550-3213(00)00362-X
[43] Cheuk L W, Nichols M A, Okan M, Gersdorf T, Vinay R, Bakr W, Lompe T and Zwierlein M 2015 Phys. Rev. Lett.114 193001 · doi:10.1103/PhysRevLett.114.193001
[44] Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D and Kuhr S 2015 Nat. Phys.11 738 · doi:10.1038/nphys3403
[45] Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S and Greiner M 2015 Phys. Rev. Lett.114 213002 · doi:10.1103/PhysRevLett.114.213002
[46] Bakr W S, Gillen J I, Peng A, Folling S and Greiner M 2009 Nature462 74 · doi:10.1038/nature08482
[47] Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I and Kuhr S 2010 Nature467 68 · doi:10.1038/nature09378
[48] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Fölling S, Pollet L and Greiner M 2010 Science329 547 · doi:10.1126/science.1192368
[49] Omran A, Boll M, Hilker T A, Kleinlein K, Salomon G, Bloch I and Gross C 2015 Phys. Rev. Lett.115 263001 · doi:10.1103/PhysRevLett.115.263001
[50] Edge G J A, Anderson R, Jervis D, McKay D C, Day R, Trotzky S and Thywissen J H 2015 Phys. Rev. A 92 063406 · doi:10.1103/PhysRevA.92.063406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.