×

Eigenvalues for the clamped plate problem of \(\mathfrak{L}_\nu^2\) operator on complete Riemannian manifolds. (English) Zbl 07914972

Summary: \( \mathfrak{L}_\nu\) operator is an important extrinsic differential operator of divergence type and has profound geometric settings. In this paper, we consider the clamped plate problem of \(\mathfrak{L}_\nu^2\) operator on a bounded domain of the complete Riemannian manifolds. A general formula of eigenvalues of \(\mathfrak{L}_\nu^2\) operator is established. Applying this general formula, we obtain some estimates for the eigenvalues with higher order on the complete Riemannian manifolds. As several fascinating applications, we discuss this eigenvalue problem on the complete translating solitons, minimal submanifolds on the Euclidean space, submanifolds on the unit sphere and projective spaces. In particular, we get a universal inequality with respect to the \(\mathcal{L}_{II}\) operator on the translating solitons. Usually, it is very difficult to get universal inequalities for weighted Laplacian and even Laplacian on the complete Riemannian manifolds. Therefore, this work can be viewed as a new contribution to universal estimate.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
53C40 Global submanifolds
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] Ashbaugh, M. S., Isoperimetric and universal inequalities for eigenvalues, Spectral Theory and Geometry (Edinburgh, 1998), 95-139, 1999, Cambridge: Cambridge University Press, Cambridge · Zbl 0937.35114 · doi:10.1017/CBO9780511566165.007
[2] Ashbaugh, M. S., Universal eigenvalue bounds of Payne-Pólya-Weinberger. Hile-Protter, and H. C. Yang, Proc. Indian Acad. Sci. Math. Sci., 112, 3-30, 2002 · Zbl 1199.35261 · doi:10.1007/BF02829638
[3] Ashbaugh, M. S.; Benguria, R. D., More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimension, SIAM J. Math. Anal., 24, 1622-1651, 1993 · Zbl 0809.35067 · doi:10.1137/0524091
[4] Ashbaugh, M. S.; Benguria, R. D., A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math., 135, 601-628, 1992 · Zbl 0757.35052 · doi:10.2307/2946578
[5] Ashbaugh, M. S.; Benguria, R. D., A second proof of the Payne-Pólya-Weinberger conjecture, Comm. Math. Phys., 147, 181-190, 1992 · Zbl 0758.34075 · doi:10.1007/BF02099533
[6] Angenent, S. B.; Velazquez, J. J L., Asymptotic shape of cusp singularities in curve shortening, Duke Math. J., 77, 71-110, 1995 · Zbl 0829.35058 · doi:10.1215/S0012-7094-95-07704-7
[7] Brands, J. J A. M., Bounds for the ratios of the first three membrane eigenvalues, Arch. Rational Mech. Anal., 16, 265-268, 1964 · Zbl 0125.14301 · doi:10.1007/BF00276187
[8] Chen, B. Y., Total Mean Curvature and Submanifolds of Finite Type, 1984, Singapore: World Scientific, Singapore · Zbl 0537.53049 · doi:10.1142/0065
[9] Chen, D.; Cheng, Q-M, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan, 60, 2, 325-339, 2008 · Zbl 1147.35060 · doi:10.2969/jmsj/06020325
[10] Chen, D., Li, H.: The sharp estimates for the first eigenvalue of Paneitz operator in 4-manifold. arXiv:1010.3102 (2010)
[11] Chen, D.; Zheng, T., Bounds for ratios of the membrane eigenvalues, J. Diff. Equa., 250, 3, 1575-1590, 2011 · Zbl 1206.35183 · doi:10.1016/j.jde.2010.10.009
[12] Chen, Q.; Qiu, H., Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv. Math., 294, 517-531, 2016 · Zbl 1336.53074 · doi:10.1016/j.aim.2016.03.004
[13] Chen, Z-C; Qian, C-L, Estimates for discrete spectrum of Laplacian operator with any order, J. China Univ. Sci. Tech., 20, 259-266, 1990 · Zbl 0748.35022
[14] Cheng, Q-M; Huang, G.; Wei, G., Estimates for lower order eigenvalues of a clamped plate problem, Calc. Var. Partial. Differ. Equa., 38, 409-416, 2010 · Zbl 1194.35287 · doi:10.1007/s00526-009-0292-8
[15] Cheng, Q-M; Peng, Y., Estimates for eigenvalues of \(\mathfrak{L}\) operator on self-shrinkers, Commun. Contemporary Math., 15, 6, 1350011, 2013 · Zbl 1285.58012 · doi:10.1142/S0219199713500119
[16] Cheng, Q-M; Ichikawa, T.; Mametsuka, S., Estimates for eigenvalues of a clamped plate problem on Riemannian manifolds, J. Math. Soc. Japan, 62, 673-686, 2010 · Zbl 1191.35192 · doi:10.2969/jmsj/06220673
[17] Cheng, Q-M; Qi, X., Eigenvalues of the Laplacian on Riemannian manifolds, Internat. J. Math., 23, 1250067, 2012 · Zbl 1251.35052 · doi:10.1142/S0129167X1250067X
[18] Cheng, Q-M; Yang, H-C, Estimates on eigenvalues of Laplacian, Math. Ann., 331, 445-460, 2005 · Zbl 1122.35086 · doi:10.1007/s00208-004-0589-z
[19] Cheng, Q-M; Yang, H-C, Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces, J. Math. Soc. Japan, 58, 545-561, 2006 · Zbl 1127.35026 · doi:10.2969/jmsj/1149166788
[20] Cheng, Q-M; Yang, H-C, Inequalities for eigenvalues of a clamped plate problem, Trans. Amer. Math. Soc., 358, 2625-2635, 2006 · Zbl 1096.35095 · doi:10.1090/S0002-9947-05-04023-7
[21] Cheng, Q-M; Yang, H-C, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337, 159-175, 2007 · Zbl 1110.35052 · doi:10.1007/s00208-006-0030-x
[22] Clutterbuck, J.; Schnürer, O.; Schulze, F., Stability of translating solutions to mean curvature flow, Calc. Var. Partial. Differ. Equa., 29, 281-293, 2007 · Zbl 1120.53041 · doi:10.1007/s00526-006-0033-1
[23] Colding, T. H.; Minicozzi, W. P II, Generic mean curvature flow I; Generic Singularities, Ann. of Math., 175, 755-833, 2012 · Zbl 1239.53084 · doi:10.4007/annals.2012.175.2.7
[24] Hile, F. N.; Protter, M. H., Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J., 29, 523-538, 1980 · Zbl 0454.35064 · doi:10.1512/iumj.1980.29.29040
[25] Hile, G. N.; Yeh, R. Z., Inequalities for eigenvalues of the biharmonic operator, Pacific J. Math., 112, 115-133, 1984 · Zbl 0541.35059 · doi:10.2140/pjm.1984.112.115
[26] Hook, S. M., Domain independent upper bounds for eigenvalues of elliptic operator, Trans. Amer. Math. Soc., 318, 615-642, 1990 · Zbl 0727.35096 · doi:10.1090/S0002-9947-1990-0994167-2
[27] Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom., 31, 285-299, 1990 · Zbl 0694.53005
[28] Levitin, M.; Parnovski, L., Commutators, spectral trace identities, and universal estimates for eigenvalues, J. Funct. Anal., 192, 425-445, 2002 · Zbl 1058.47022 · doi:10.1006/jfan.2001.3913
[29] Marcellini, P., Bounds for the third membrane eigenvalue, J. Diff. Equa., 37, 438-443, 1980 · Zbl 0421.35066 · doi:10.1016/0022-0396(80)90108-4
[30] Payne, L. E.; Pólya, G.; Weinberger, H. F., Sur le quotient de deux frequences propres consécutives, Comptes Rendus Acad. Sci. Paris, 241, 917-919, 1955 · Zbl 0065.08801
[31] Payne, L. E.; Pólya, G.; Weinberger, H. F., On the ratio of consecutive eigenvalues, J. Math. and Phys., 35, 289-298, 1956 · Zbl 0073.08203 · doi:10.1002/sapm1956351289
[32] Reilly, R. C., On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comm. Math. Helv., 52, 525-533, 1977 · Zbl 0382.53038 · doi:10.1007/BF02567385
[33] Sun, H. J., Yang-type inequalities for weighted eigenvalues of a second order uniformly elliptic operator with a nonnegative potential, Proc. Amer. Math. Soc., 138, 2827-2838, 2010 · Zbl 1194.35290 · doi:10.1090/S0002-9939-10-10321-9
[34] Sun, H.; Cheng, Q-M; Yang, H-C, Lower order eigenvalues of Dirichlet Laplacian, Manuscripta Math., 125, 139-156, 2008 · Zbl 1137.35050 · doi:10.1007/s00229-007-0136-9
[35] Wang, Q.; Xia, C., Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds, J. Funct. Anal., 245, 334-352, 2007 · Zbl 1113.58013 · doi:10.1016/j.jfa.2006.11.007
[36] Wang, Q.; Xia, C., Universal bounds for eigenvalues of the biharmonic operator, J. Math. Anal. Appl., 364, 1-17, 2010 · Zbl 1189.35208 · doi:10.1016/j.jmaa.2009.11.014
[37] Wang, Q.; Xia, C., Inequalities for eigenvalues of a clamped plate problem, Calc. Var. Partial Differ. Equa., 40, 273-289, 2011 · Zbl 1205.35175 · doi:10.1007/s00526-010-0340-4
[38] Xin, Y. L., Translating soliton of the mean curvature flow, Calc. Var. Partial. Differ. Equa., 54, 1995-2016, 2015 · Zbl 1325.53091 · doi:10.1007/s00526-015-0853-y
[39] Xin, Y. L., Singularities of mean curvature flow, Sci. China Math., 64, 1349-1356, 2021 · Zbl 1470.53005 · doi:10.1007/s11425-020-1840-1
[40] Yang, H. C.: An estimate of the differance between consecutive eigenvalues. Preprint IC/91/60 of ICTP, Trieste, 1991
[41] Zeng, L., Eigenvalues with lower order for the clamped plate problem of \(\mathfrak{L}_{\nu}^2\) operator on the Riemannian manifolds, Sci. China Math., 65, 793-812, 2022 · doi:10.1007/s11425-020-1832-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.