×

Rigidity of self-shrinkers and translating solitons of mean curvature flows. (English) Zbl 1336.53074

Summary: In this paper, we prove that any complete \(m\)-dimensional spacelike self-shrinkers in pseudo-Euclidean spaces \(\mathbb R_n^{m+n}\) must be affine planes, and there exists no complete \(m\)-dimensional spacelike translating soliton in \(\mathbb R_n^{m+n}\). These results are proved by using a new Omori-Yau maximum principle. We also derive a rigidity theorem of self-shrinking hypersurfaces in Euclidean space whose Gauss image lies in a regular ball.

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53C40 Global submanifolds
53C43 Differential geometric aspects of harmonic maps
Full Text: DOI

References:

[1] Abresch, U.; Langer, J., The normalized curve shortening ow and homothetic solutions, J. Differential Geom., 23, 2, 175-196 (1986) · Zbl 0592.53002
[2] Adames, M. R., Spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces, Comm. Anal. Geom., 22, 5, 897-929 (2014) · Zbl 1329.53090
[3] Albanese, G.; Alias, L. J.; Rigoli, M., A general form of the weak maximum principle and some applications, Rev. Mat. Iberoam., 29, 4, 1437-1476 (2013) · Zbl 1296.58009
[4] Angenent, S., Shrinking doughnuts, (Nonlinear Diffusion Equations and Their Equilibrium States, vol. 3 (1992), Birkhäuser: Birkhäuser Boston, Basel, Berlin), 21-38 · Zbl 0762.53028
[5] Bao, C.; Shi, Y., Gauss map of translating solitons of mean curvature flow, Proc. Amer. Math. Soc., 142, 4333-4339 (2014) · Zbl 1303.53087
[6] Calabi, E., An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J., 25, 45-56 (1958) · Zbl 0079.11801
[7] Calabi, E., Examples of Bernstein problems for some nonlinear equations, (Proc. Symp. Global Analysis (1968), UC Berkeley) · Zbl 0211.12801
[8] Cao, H. D.; Li, H., A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. Partial Differential Equations, 46, 3, 879-889 (2013) · Zbl 1271.53064
[9] Chau, A.; Chen, J.; Yuan, Y., Rigidity of entire self-shrinking solutions to curvature flows, J. Reine Angew. Math., 664, 229-239 (2012) · Zbl 1250.53064
[10] Chen, Q.; Jost, J.; Qiu, H. B., Existence and Liouville theorems for V-harmonic maps from complete manifolds, Ann. Global Anal. Geom., 42, 565-584 (2012) · Zbl 1270.58010
[11] Chen, Q.; Jost, J.; Qiu, H. B., Omori-Yau maximum principles, V-harmonic maps and their geometric applications, Ann. Global Anal. Geom., 46, 259-279 (2014) · Zbl 1308.58008
[12] Chen, Q.; Jost, J.; Wang, G., A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl and Finsler geometry, J. Geom. Anal., 25, 2407-2426 (2015) · Zbl 1345.58007
[13] Cheng, Q. M.; Peng, Y. J., Complete self-shrinkers of the mean curvature flow, Calc. Var. Partial Differential Equations, 52, 3, 497-506 (2015) · Zbl 1311.53054
[14] Cheng, S. Y.; Yau, S. T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28, 333-354 (1975) · Zbl 0312.53031
[15] Cheng, S. Y.; Yau, S. T., Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104, 407-419 (1976) · Zbl 0352.53021
[16] Colding, T. H.; Minicozzi, W. P., Generic mean curvature flow I; generic singularities, Ann. of Math., 175, 2, 755-833 (2012) · Zbl 1239.53084
[17] Ding, Q., Entire spacelike translating solitons in Minkowski space, J. Funct. Anal., 265, 3133-3162 (2013) · Zbl 1285.53053
[18] Ding, Q.; Wang, Z., On the self-shrinking system in arbitrary codimensional spaces (2010)
[19] Ding, Q.; Xin, Y. L., The rigidity theorems for Lagrangian self-shrinkers, J. Reine Angew. Math., 692, 109-123 (2014) · Zbl 1294.53059
[20] Ding, Q.; Xin, Y. L.; Yang, L., The rigidity theorems of self shrinkers via Gauss maps (2012) · Zbl 1356.53065
[21] Huang, R.; Wang, Z., On the entire self-shrinking solutions to Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 41, 321-339 (2011) · Zbl 1217.53069
[22] Huisken, G., Local and global behaviour of hypersurfaces moving by mean curvature, (Differential Geometry: Partial Differential Equations on Manifolds. Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990. Differential Geometry: Partial Differential Equations on Manifolds. Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990, Proc. Sympos. Pure Math., vol. 54 (1993), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 175-191 · Zbl 0791.58090
[23] Jian, H. Y., Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space, J. Differential Equations, 220, 1, 147-162 (2006) · Zbl 1189.53065
[24] Jost, J.; Xin, Y. L., Some aspects of the global geometry of entire space-like submanifolds, Results Math., 40, 233-245 (2001) · Zbl 0998.53036
[25] Lima, B. P.; Pessoa, L. D.F., On the Omori-Yau maximum principle and geometric applications (2012)
[26] Liu, H. Q.; Xin, Y. L., Some results on space-like self-shrinkers, Acta Math. Sin. (Engl. Ser.), 32, 1, 69-82 (2016) · Zbl 1357.58021
[27] Neves, A.; Tian, G., Translating solutions to Lagrangian mean curvature flow, Trans. Amer. Math. Soc., 365, 11, 5655-5680 (2013) · Zbl 1282.53057
[28] Smoczyk, K., Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Not. IMRN, 48, 2983-3004 (2005) · Zbl 1085.53059
[29] Wang, L., A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata, 151, 297-303 (2011) · Zbl 1211.53082
[30] Wang, X. J., Convex solutions to the mean curvature flow, Ann. of Math., 173, 3, 1185-1239 (2011) · Zbl 1231.53058
[31] Wang, L., Uniqueness of self-similar shrinkers with asymptotically conical ends, J. Amer. Math. Soc., 27, 3, 613-638 (2014) · Zbl 1298.53069
[32] Xin, Y. L., Mean curvature flow with bounded Gauss image, Results Math., 59, 415-436 (2011) · Zbl 1239.53087
[33] Xin, Y. L., Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations, 54, 1995-2016 (2015) · Zbl 1325.53091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.