×

Commutators, spectral trace identities, and universal estimates for eigenvalues. (English) Zbl 1058.47022

The paper under review deals with trace identities concerning the eigenvalues \(\lambda_j\) and the eigenvectors \(\phi_j\) of a self-adjoint operator \(H\) acting in a Hilbert space. In a first main theorem, it is proved that \[ \sum_k \frac{| \langle [H,G]\phi_j,\phi_k\rangle| ^2 }{ \lambda_k-\lambda_j} = -\frac{1}{ 2} \langle [[H,G],G]\phi_j,\phi_j\rangle= \sum_k (\lambda_k-\lambda_j)| \langle G\phi_j,\phi_k\rangle| ^2 \] if \(G\) is a second selfadjoint operator such that \(G(D_H)\subset D_H\).
The second main result is a generalization to the case of two operators, \(H_1\) and \(H_2\) (\(H_2\) not necessarily selfadjoint) with the mixing commutator \(H_1G-GH_2\) instead of \([H,G]\), the model case being Laplacians with different boundary conditions. This second theorem contains an estimate of the eigenvalues of \(H_1\) in terms of those of \(H_2\).
The authors include several interesting applications when \(H\) is a positive elliptic operator with Dirichlet boundary conditions, the Dirichlet Laplacian, the Neumann Laplacian, and when \(H_1\) and \(H_2\) are a couple of Schrödinger operators. The second operator \(G\) is the multiplication by a function or, in the last case, the derivative.

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
35P05 General topics in linear spectral theory for PDEs
47F05 General theory of partial differential operators

References:

[1] Ashbaugh, M. S., Isoperimetric and universal inequalities for eigenvalues, (Davies, E. B.; Safarov, Yu., Spectral Theory and Geometry (Edinburgh, 1998), 273 (1999), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 95-139 · Zbl 0937.35114
[2] Bethe, H., Zur Theorie des Durchgangs schneller Korpuskulastrahlen durch Materie, Ann. Physik, 5, 325-400 (1930) · JFM 56.1326.03
[3] Chung, F. R.K.; Grigor’yan, A.; Yau, S.-T., Upper bounds for eigen-values of discrete and continuous Laplace operators, Adv. in Math., 117, 165-178 (1996) · Zbl 0844.53029
[4] Cohen-Tannoudji, C.; Diu, B.; Laloë, F., Quantum Mechanics (1978), Wiley: Wiley New York
[5] Harrell, E. M., General bounds for the eigenvalues of Schrödinger operators, (Schaefer, P. W., Maximum Principles and Eigenvalue Problems in Partial Differential Equations (1988), Longman House, Essex and Wiley: Longman House, Essex and Wiley New York), 146-166 · Zbl 0678.35075
[6] Harrell, E. M., Some geometric bounds on eigenvalue gaps, Comm. Partial Differential Equations, 18, 179-198 (1993) · Zbl 0810.35067
[7] Harrell, E. M.; Michel, P. L., Commutator bounds for eigenvalues of some differential operators, Evolution Equations, 168 (1995), Marcel Dekker: Marcel Dekker New York, p. 235-244 · Zbl 0816.35094
[8] Harrell, E. M.; Michel, P. L., Commutator bounds for eigenvalues, with applications to spectral geometry, Comm. Partial Differential Equations, 19, 2037-2055 (1994) · Zbl 0815.35078
[9] Harrell, E. M.; Stubbe, J., On trace identities and universal eigenvalue estimates for some partial differential operators, Trans. Amer. Math. Soc., 349, 2037-2055 (1997)
[10] Heisenberg, W., Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Z. Phys., 33, 879-893 (1925) · JFM 51.0728.07
[11] Hile, G. N.; Protter, M. H., Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J., 29, 523-538 (1980) · Zbl 0454.35064
[12] Hook, S. M., Inequalities for eigenvalues of self-adjoint operators, Trans. Amer. Math. Soc., 318, 237-259 (1990) · Zbl 0714.35057
[13] Hook, S. M., Domain-independent upper bounds for eigenvalues of elliptic operators, Trans. Amer. Math. Soc., 318, 615-642 (1990) · Zbl 0727.35096
[14] Kuhn, W., Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien, Z. Phys., 33, 408-412 (1925) · JFM 51.0747.05
[15] Merzbacher, E., Quantum Mechanics (1998), Wiley: Wiley New York
[16] Payne, L. E.; Pólya, G.; Weinberger, H. F., On the ratio of consecutive eigenvalues, J. Math. Phys., 35, 289-298 (1956) · Zbl 0073.08203
[17] Reiche, F.; Thomas, W., Über die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind, Z. Phys., 34, 510-525 (1925) · JFM 51.0748.06
[18] Thomas, W., Über die Zahl der Dispersionselektronen, die einem stationären Zustande zugeordnet sind, Naturwissenschaften, 13, 627 (1925) · JFM 51.0758.14
[19] Wang, S., Generalization of the Thomas-Reiche-Kuhn and the Bethe sum rules, Phys. Rev. A, 60, 262-266 (1999)
[20] H. Yang, An estimate of the difference between consecutive eigenvalues, preprint IC/91/60, International Centre for Theoretical Physics, Trieste, 1991, (revised preprint, Academia Sinica, 1995).; H. Yang, An estimate of the difference between consecutive eigenvalues, preprint IC/91/60, International Centre for Theoretical Physics, Trieste, 1991, (revised preprint, Academia Sinica, 1995).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.