×

Lower order eigenvalues of Dirichlet Laplacian. (English) Zbl 1137.35050

Summary: In this paper, we investigate an eigenvalue problem for the Dirichlet Laplacian on a domain in an \(n\)-dimensional compact Riemannian manifold. First we give a general inequality for eigenvalues. As one of its applications, we study eigenvalues of the Laplacian on a domain in an \(n\)-dimensional complex projective space, on a compact complex submanifold in complex projective space and on the unit sphere. By making use of the orthogonalization of Gram-Schmidt (QR-factorization theorem), we construct trial functions. By means of these trial functions, estimates for lower order eigenvalues are obtained.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
58C40 Spectral theory; eigenvalue problems on manifolds
Full Text: DOI

References:

[1] Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. In: Davies, E.B., Yu Safalov (eds.) spectral theory and geometry (Edinburgh, 1998), London Math. Soc. Lecture Notes, vol. 273. Cambridge University Press, Cambridge, pp. 95–139 (1999) · Zbl 0937.35114
[2] Ashbaugh M.S. and Benguria R.D. (1991). Proof of the Payne-Pólya-Weinberger conjecture. Bull. Am. Math. Soc. 25: 19–29 · Zbl 0736.35075 · doi:10.1090/S0273-0979-1991-16016-7
[3] Ashbaugh M.S. and Benguria R.D. (1992). A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions. Ann. Math. 135: 601–628 · Zbl 0757.35052 · doi:10.2307/2946578
[4] Ashbaugh M.S. and Benguria R.D. (1992). A second proof of the Payne-Pólya-Weinberger conjecture. Commun. Math. Phys. 147: 181–190 · Zbl 0758.34075 · doi:10.1007/BF02099533
[5] Ashbaugh M.S. and Benguria R.D. (1993). More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions. SIAM J. Math. Anal. 24: 1622–1651 · Zbl 0809.35067 · doi:10.1137/0524091
[6] Brands J.J.A.M. (1964). Bounds for the ratios of the first three membrane eigenvalues. Arch. Ration. Mech. Anal. 16: 265–268 · Zbl 0125.14301 · doi:10.1007/BF00276187
[7] Chavel I. (1984). Eigenvalues in Riemannian Geometry. Academic, New York · Zbl 0551.53001
[8] Cheng Q.-M. and Yang H.C. (2005). Estimates on eigenvalues of Laplacian. Math. Ann. 331: 445–460 · Zbl 1122.35086 · doi:10.1007/s00208-004-0589-z
[9] Cheng Q.-M. and Yang H.C. (2006). Inequalities for eigenvalues of a clamped plate problem. Trans. Am. Math. Soc. 358: 2625–2635 · Zbl 1096.35095 · doi:10.1090/S0002-9947-05-04023-7
[10] Cheng Q.-M. and Yang H.C. (2006). Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces. J. Math. Soc. Jpn. 58: 545–561 · Zbl 1127.35026 · doi:10.2969/jmsj/1149166788
[11] Chiti G. (1983). A bound for the ratio of the first two eigenvalues of a membrane. SIAM J. Math. Anal. 14: 1163–1167 · Zbl 0535.35064 · doi:10.1137/0514090
[12] Vries H.L. (1967). On the upper bound for the ratio of the first two membrane eigenvalues. Z. Naturforschung 22: 152–153 · Zbl 0145.46001
[13] Harrell E.M. II (1993). Some geometric bounds on eigenvalue gaps. Comm. Part. Diff. Equ. 18: 179–198 · Zbl 0810.35067 · doi:10.1080/03605309308820926
[14] Michel P.L. and Harrell E.M. II (1994). Commutator bounds for eigenvalues with applications to spectral geometry. Comm. Part. Diff. Equ. 19: 2037–2055 · Zbl 0815.35078 · doi:10.1080/03605309408821081
[15] Stubbe J. and Harrell E.M. II (1997). On trace identities and universal eigenvalue estimates for some partial differential operators. Trans. Am. Math. Soc. 349: 1797–1809 · Zbl 0887.35111 · doi:10.1090/S0002-9947-97-01846-1
[16] Hile G.N. and Protter M.H. (1980). Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J. 29: 523–538 · Zbl 0454.35064 · doi:10.1512/iumj.1980.29.29040
[17] Leung P.-F. (1991). On the consecutive eigenvalues of the Laplacain of a compact minimal submanifold in a sphere. J. Aust. Math. Soc. 50: 409–426 · doi:10.1017/S1446788700033000
[18] Li P. (1980). Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helv. 55: 347–363 · Zbl 0451.53036 · doi:10.1007/BF02566692
[19] Levitin M. and Parnovski L. (2002). Commutators, spectral trace identities and universal estimates for eigenvalues. J. Funct. Anal. 192: 425–445 · Zbl 1058.47022 · doi:10.1006/jfan.2001.3913
[20] Marcellini P. (1980). Bounds for the third membrane eigenvalue. J. Diff. Equ. 37: 438–443 · doi:10.1016/0022-0396(80)90108-4
[21] Payne L.E., Polya G. and Weinberger H.F. (1955). Sur le quotient de deux fréquences propres consécutives. Comptes Rendus Acad. Sci. Paris 241: 917–919 · Zbl 0065.08801
[22] Payne L.E., Polya G. and Weinberger H.F. (1956). On the ratio of consecutive eigenvalues. J. Math. Phys. 35: 289–298 · Zbl 0073.08203
[23] Protter M.H. (1987). Can one hear the shape of a drum?. SIAM Rev. 29: 185–197 · Zbl 0645.35074 · doi:10.1137/1029041
[24] Thompson C.J. (1969). On the ratio of consecutive eigenvalues in n-dimensions. Stud. Appl. Math. 48: 281–283 · Zbl 0183.11005
[25] Yang, H.C.: An estimate of the difference between consecutive eigenvalues, preprint IC/91/60 of ICTP, Trieste (1991)
[26] Yang P.C. and Yau S.T. (1980). Eigenvalues of the Laplacian of compact Riemannian surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa CI. Sci. 7: 55–63 · Zbl 0446.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.