×

The fractional logarithmic Schrödinger operator: properties and functional spaces. (English) Zbl 07914778

Summary: In this note, we deal with the fractional logarithmic Schrödinger operator \((I+(-\Delta)^s)^{\log}\) and the corresponding energy spaces for variational study. The fractional (relativistic) logarithmic Schrödinger operator is the pseudo-differential operator with logarithmic Fourier symbol, \(\log (1+|\xi|^{2s})\), \(s>0\). We first establish the integral representation corresponding to the operator and provide an asymptotics property of the related kernel. We introduce the functional analytic theory allowing to study the operator from a PDE point of view and the associated Dirichlet problems in an open set of \(\mathbb{R}^N\). We also establish some variational inequalities, provide the fundamental solution and the asymptotics of the corresponding Green function at zero and at infinity.

MSC:

45K05 Integro-partial differential equations
45P05 Integral operators
45C05 Eigenvalue problems for integral equations
45A05 Linear integral equations
35R11 Fractional partial differential equations
35S15 Boundary value problems for PDEs with pseudodifferential operators
26A33 Fractional derivatives and integrals
46E10 Topological linear spaces of continuous, differentiable or analytic functions
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Software:

DLMF

References:

[1] Arias-de-Reyna, J., On the theorem of Frullani, Proc. Am. Math. Soc., 109, 1, 165-175, 1990 · Zbl 0701.26008 · doi:10.1090/S0002-9939-1990-1007485-4
[2] Arias, S.; Rodriguez-Lopez, S., Bilinear pseudodifferential operators with symbol in \(BS^m{1,1}\) on Triebel-Lizorkin spaces with critical Sobolev index, Collect. Math., 75, 1-25, 2023
[3] Ascione, G.; Lörinczi, J., Potentials for non-local Schrödinger operators with zero eigenvalues, J. Differ. Equ., 317, 264-364, 2022 · Zbl 1497.35120 · doi:10.1016/j.jde.2022.02.009
[4] Beckner, W., Pitt’s inequality and the uncertainty principle, Proc. Am. Math. Soc., 123, 6, 1897-1905, 1995 · Zbl 0842.58077
[5] Beckner, W.: Logarithmic Sobolev inequalities and the existence of singular Integrals. Forum Math 9(3), 303-323 (1997) · Zbl 0945.42006
[6] Beghin, L., Geometric stable processes and related fractional differential equations, Electron. Commun. Probab., 19, 1-14, 2014 · Zbl 1321.60101 · doi:10.1214/ECP.v19-2771
[7] Beghin, L., Fractional gamma and gamma-subordinated processes, Stoch. Anal. Appl., 33, 5, 903-926, 2015 · Zbl 1326.60047 · doi:10.1080/07362994.2015.1053615
[8] Bertoin, J., Lévy Processes, 1996, Cambridge: Cambridge University Press, Cambridge · Zbl 0861.60003
[9] Bogdan, K.; Jakubowski, T., Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271, 1, 179-198, 2007 · Zbl 1129.47033 · doi:10.1007/s00220-006-0178-y
[10] Blumenthal, RM; Getoor, RK, Some theorems on stable processes, Trans. Am. Math. Soc., 95, 2, 263-273, 1960 · Zbl 0107.12401 · doi:10.1090/S0002-9947-1960-0119247-6
[11] Chae, D.; Constantin, P.; Wu, J., Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202, 1, 35-62, 2011 · Zbl 1266.76010 · doi:10.1007/s00205-011-0411-5
[12] Chang-Lara, HA; Saldaña, A., Classical solutions to integral equations with zero order kernels, Math. Ann., 389, 1-53, 2023
[13] Charão, RC; Piske, A.; Ikehata, R., A dissipative logarithmic-type evolution equation: asymptotic profile and optimal estimates, J. Math. Anal. Appl., 506, 1, 2022 · Zbl 1475.35042 · doi:10.1016/j.jmaa.2021.125587
[14] Chen, H., Véron, L.: The Cauchy problem associated to the logarithmic Laplacian with an application to the fundamental solution. arxiv:2307.16197 (2023) · Zbl 1540.35237
[15] Chen, H.; Weth, T., The Dirichlet problem for the logarithmic Laplacian, Commun. Partial Differ. Equ., 44, 11, 1100-1139, 2019 · Zbl 1423.35390 · doi:10.1080/03605302.2019.1611851
[16] Chen, H., The Dirichlet elliptic problem involving regional fractional Laplacian, J. Math. Phys., 59, 7, 2018 · Zbl 1394.35549 · doi:10.1063/1.5046685
[17] Chen, ZQ; Song, R., Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226, 1, 90-113, 2005 · Zbl 1081.60056 · doi:10.1016/j.jfa.2005.05.004
[18] Choi, J.H., Kim, I.: A maximal \(L^p\)-regularity theory to initial value problems with time measurable nonlocal operators generated by additive processes. In: Stochastics and Partial Differential Equations: Analysis and Computations, pp. 1-64 (2023)
[19] Correa, E.; de Pablo, A., Nonlocal operators of order near zero, J. Math. Anal. Appl., 461, 1, 837-867, 2018 · Zbl 1393.45011 · doi:10.1016/j.jmaa.2017.12.011
[20] Felsinger, M.; Kassmann, M.; Voigt, P., The Dirichlet problem for nonlocal operators, Math. Z., 279, 3-4, 779-809, 2015 · Zbl 1317.47046 · doi:10.1007/s00209-014-1394-3
[21] Feulefack, PA, The logarithmic Schrödinger operator and associated Dirichlet problems, J. Math. Anal. Appl., 517, 2022 · Zbl 1498.60183 · doi:10.1016/j.jmaa.2022.126656
[22] Feulefack, PA; Jarohs, S., Nonlocal operators of small order, Ann. Mat. Pura Appl. (1923-), 202, 4, 1501-1529, 2023 · Zbl 1516.35458 · doi:10.1007/s10231-022-01290-y
[23] Feulefack, P.A.: Spectral characteristics of Dirichlet problems for nonlocal operators. PhD diss., Dissertation, Frankfurt am Main, Johann Wolfgang Goethe-Universität (2022)
[24] Feulefack, PA; Jarohs, S.; Weth, T., Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian, J. Fourier Anal. Appl., 28, 2, 1-44, 2022 · Zbl 1485.35304 · doi:10.1007/s00041-022-09908-8
[25] Foghem, G.: \(L^2\)-Theory for nonlocal operators on domains. Publikationen an der Universität Bielefeld (2020)
[26] Frank, RL; König, T.; Tang, H., Classification of solutions of an equation related to a conformal log Sobolev inequality, Adv. Math., 375, 2020 · Zbl 1453.35036 · doi:10.1016/j.aim.2020.107395
[27] Garroni, MG; Menaldi, JL, Second Order Elliptic Integro-Differential Problems, 2002, Boca Raton: CRC Press, Boca Raton · Zbl 1014.45002 · doi:10.1201/9781420035797
[28] Grzywny, T.; Ryznar, M., Potential theory of one-dimensional geometric stable processes, Colloq. Math., 1, 129, 7-40, 2012 · Zbl 1276.60083 · doi:10.4064/cm129-1-2
[29] Hernández Santamaría, V.; Saldaña, A., Small order asymptotics for nonlinear fractional problems, Calc. Var. Partial Differ. Equ., 61, 3, 1-26, 2022 · Zbl 1486.35053 · doi:10.1007/s00526-022-02192-w
[30] Jacob, N., Schilling, R.L.: Lévy-type processes and pseudodifferential operators. In: Lévy Processes: Theory and Applications. Birkhäuser Boston, Boston, pp. 139-168 (2001) · Zbl 0984.60054
[31] Jarohs, S.; Weth, T., Local compactness and nonvanishing for weakly singular nonlocal quadratic forms, Nonlinear Anal., 193, 2020 · Zbl 1444.47064 · doi:10.1016/j.na.2019.01.021
[32] Jarohs, S.; Weth, T., On the maximum principle for nonlocal operators, Math. Z., 293, 1, 81-111, 2019 · Zbl 1455.35032 · doi:10.1007/s00209-018-2193-z
[33] Jarohs, S.; Saldaña, A.; Weth, T., A new look at the fractional Poisson problem via the logarithmic Laplacian, J. Funct. Anal., 279, 11, 2020 · Zbl 1450.35269 · doi:10.1016/j.jfa.2020.108732
[34] Kassmann, M.; Mimica, A., Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc., 19, 4, 983-1011, 2017 · Zbl 1371.35316 · doi:10.4171/jems/686
[35] Kim, P.; Mimica, A., Green function estimates for subordinate Brownian motions: stable and beyond, Trans. Am. Math. Soc., 366, 8, 4383-4422, 2014 · Zbl 1327.60165 · doi:10.1090/S0002-9947-2014-06017-0
[36] Knopova V., Schilling R. L.: A note on the existence of transition probability densities of Lévy processes. Forum Math 25(1), 125-149 (2013) · Zbl 1269.60050
[37] Kozubowski, TJ; Panorska, AK, Multivariate geometric stable distributions in financial applications, Math. Comput. Model., 29, 10-12, 83-92, 1999 · Zbl 1098.62587 · doi:10.1016/S0895-7177(99)00094-1
[38] Lieb, EH; Loss, M., Analysis, 1997, Providence: American Mathematical Society, Providence
[39] Madan, DB; Carr, PP; Chang, EC, The variance gamma process and option pricing, Rev. Finance, 2, 1, 79-105, 1998 · Zbl 0937.91052 · doi:10.1023/A:1009703431535
[40] López-Mimbela, JA; Privault, N., Blow-up and stability of semilinear PDEs with gamma generators, J. Math. Anal. Appl., 307, 1, 181-205, 2005 · Zbl 1112.35042 · doi:10.1016/j.jmaa.2004.11.003
[41] Mimica, A., On harmonic functions of symmetric Lévy processes, Ann. l’IHP Probab. Stat., 50, 1, 214-235, 2014 · Zbl 1298.60054
[42] Olver, FWJ; Lozier, DW; Boisvert, RF; Clark, CW, NIST Handbook of Mathematical Functions Hardback and CD-ROM, 2010, Cambridge: Cambridge University Press, Cambridge · Zbl 1198.00002
[43] Piske, A.; Charão, RC; Ikehata, R., Double diffusion structure of logarithmically damped wave equations with a small parameter, J. Differ. Equ., 311, 188-228, 2022 · Zbl 1481.35067 · doi:10.1016/j.jde.2021.12.010
[44] Rachev, ST; Mittnik, S., Stable Paretian Models in Finance, 2000, New York: Wiley, New York · Zbl 0972.91060
[45] Rao, M.; Song, R.; Vondraček, Z., Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal., 25, 1, 1-27, 2006 · Zbl 1107.60042 · doi:10.1007/s11118-005-9003-z
[46] Song, R.; Vondraček, Z., Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, 125, 4, 578-592, 2003 · Zbl 1022.60078 · doi:10.1007/s00440-002-0251-1
[47] Šikić, H.; Song, R.; Vondraček, Z., Potential theory of geometric stable processes, Probab. Theory Relat. Fields, 135, 4, 547-575, 2006 · Zbl 1099.60051 · doi:10.1007/s00440-005-0470-3
[48] Temgoua, RY; Weth, T., The eigenvalue problem for the regional fractional Laplacian in the small order limit, Potential Anal., 60, 1-22, 2022
[49] Vàzquez, JL, Asymptotic behaviour for the fractional heat equation in the Euclidean space, Complex Var. Elliptic Equ., 63, 7-8, 1216-1231, 2018 · Zbl 1388.35216 · doi:10.1080/17476933.2017.1393807
[50] Zhang, R., Kumar, V., Ruzhansky, M.: A direct method of moving planes for logarithmic Schrödinger operator. arxiv preprint arXiv:2210.09811 (2022)
[51] Zhao, S.; Shang, X.; Wang, G.; Zhao, H., A fast algorithm for intra-frame versatile video coding based on edge features, Sensors, 23, 13, 6244, 2023 · doi:10.3390/s23136244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.