×

The Cauchy problem associated to the logarithmic Laplacian with an application to the fundamental solution. (English) Zbl 1540.35237

Summary: Let \(\mathcal{L}_{\Delta}\) be the logarithmic Laplacian operator with Fourier symbol \(2 \ln |\zeta|\), we study the expression of the diffusion kernel which is associated to the equation \[ \partial_t u + \mathcal{L}_{\Delta} u = 0 \text{ in } (0, \tfrac{N}{2}) \times \mathbb{R}^N, \qquad u(0, \cdot) = 0 \text{ in } \mathbb{R}^N \setminus \{0\}. \] We apply our results to give a classification of the solutions of \[ \begin{cases} \partial_t u + \mathcal{L}_{\Delta} u = 0 & \text{ in } (0, T) \times \mathbb{R}^N, \\ u (0, \cdot) = f & \text{ in } \mathbb{R}^N \end{cases} \] and obtain an expression of the fundamental solution of the associated stationary equation in \(\mathbb{R}^N\), and of the fundamental solution \(u\) in a bounded domain, i.e. \(\mathcal{L}_{\Delta} u = k \delta_0\) in the sense of distributions in \(\Omega\), such that \(u = 0\) in \(\mathbb{R}^N \setminus \Omega\).

MSC:

35K15 Initial value problems for second-order parabolic equations
35A08 Fundamental solutions to PDEs

References:

[1] Barrios, B.; Figalli, A.; Ros-Oton, X., Free boundary regularity in the parabolic fractional obstacle problem, Commun. Pure Appl. Math., 71, 10, 2129-2159, 2018 · Zbl 1420.35428
[2] Barrios, B.; Peral, I.; Soria, F.; Valdinoci, E., A Widder’s type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213, 629-650, 2014 · Zbl 1310.35226
[3] Bogdan, K.; Jakubowski, T., Estimates of the heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271, 1, 179-198, 2007 · Zbl 1129.47033
[4] Cabré, X.; Roquejoffre, J., The influence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., 320, 3, 679-722, 2013 · Zbl 1307.35310
[5] Caffarelli, L.; Salsa, S.; Silvestre, L., Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian, Invent. Math., 171, 425-461, 2008 · Zbl 1148.35097
[6] Caffarelli, L.; Figalli, A., Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math., 680, 191-233, 2013 · Zbl 1277.35088
[7] Chen, H., The Dirichlet elliptic problem involving regional fractional Laplacian, J. Math. Phys., 59, 7, Article 071504 pp., 2018 · Zbl 1394.35549
[8] Chen, H.; Felmer, P.; Quaas, A., Large solution to elliptic equations involving fractional Laplacian, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 32, 1199-1228, 2015 · Zbl 1456.35211
[9] Chen, H.; Véron, L., Initial trace of positive solutions to fractional diffusion equations with absorption, J. Funct. Anal., 276, 1145-1200, 2019 · Zbl 1415.35153
[10] Chen, H.; Véron, L., Bounds for eigenvalues of the Dirichlet problem for the logarithmic Laplacian, Adv. Calc. Var., 16, 3, 541-558, 2023 · Zbl 1518.35515
[11] Chen, H.; Weth, T., The Dirichlet problem for the logarithmic Laplacian, Commun. Partial Differ. Equ., 44, 1100-1139, 2019 · Zbl 1423.35390
[12] Correa, E.; De Pablo, A., Nonlocal operators of order near zero, J. Math. Anal. Appl., 461, 837-867, 2018 · Zbl 1393.45011
[13] Crismale, V.; De Luca, L.; Kubin, A.; Ninno, A.; Ponsiglione, M., The variational approach to s-fractional heat flows and the limit cases \(s \to 0^+\) and \(s \to 1^-\), J. Funct. Anal., 284, 8, Article 109851 pp., 2023 · Zbl 1507.49010
[14] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573, 2012 · Zbl 1252.46023
[15] Droniou, J.; Galloüet, T.; Vovelle, J., Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3, 3, 499-521, 2003 · Zbl 1036.35123
[16] Frank, R.; König, T.; Tang, H., Classification of solutions of an equation related to a conformal log Sobolev inequality, Adv. Math., 375, Article 107395 pp., 2020 · Zbl 1453.35036
[17] Haimo, D., Widder temperature representations, J. Math. Anal. Appl., 41, 170-178, 1973 · Zbl 0249.35033
[18] Jarohs, S.; Saldaña, S.; Weth, T., A new look at the fractional Poisson problem via the logarithmic Laplacian, J. Funct. Anal., 279, 11, Article 108732 pp., 2020 · Zbl 1450.35269
[19] Laptev, A.; Weth, T., Spectral properties the logarithmic Laplacian, Anal. Math. Phys., 11, 3, Article 133 pp., 2021 · Zbl 1476.35153
[20] Lebedev, N., Special Functions and Their Applications, 1972, Dover Publications Inc.: Dover Publications Inc. New York · Zbl 0271.33001
[21] Lions, J. L.; Petree, J., Sur une classe d’espaces d’interpolation, Publ. IHES, 19, 5-68, 1964 · Zbl 0148.11403
[22] Musina, R.; Nazarov, A. I., On fractional Laplacians, Commun. Partial Differ. Equ., 39, 1780-1790, 2014 · Zbl 1304.47061
[23] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101, 275-302, 2014 · Zbl 1285.35020
[24] Ros-Oton, X.; Serra, J., The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213, 587-628, 2014 · Zbl 1361.35199
[25] Schwartz, L., Théorie des distributions, (Hermann, 1950/1951, 1966) · Zbl 0037.07301
[26] Sire, Y.; Terracini, S.; Tortone, G., On the nodal set of solutions to degenerate or singular elliptic equations with an application to s-harmonic functions, J. Math. Pures Appl. (9), 143, 376-441, 2020 · Zbl 1471.35151
[27] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60, 1, 67-112, 2007 · Zbl 1141.49035
[28] Terracini, S.; Tortone, G.; Vita, S., On s-harmonic functions on cones, Anal. PDE, 11, 7, 1653-1691, 2018 · Zbl 1391.35401
[29] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, 1970, Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 0207.13501
[30] Stinga, P. B., User’s Guide to the Fractional Laplacian and the Method of Semigroups, Handbook of Fractional Calculus with Applications, vol. 2, 235-265, 2019, De Gruyter: De Gruyter Berlin · Zbl 1410.26004
[31] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis, 1996, Cambridge Univ. Pr. · Zbl 0951.30002
[32] Widder, D., Positive temperatures on an infinite rod, Trans. Am. Math. Soc., 55, 1, 85-95, 1944 · Zbl 0061.22303
[33] Widder, D., The Heat Equation, 1975, Academic Press: Academic Press New York · Zbl 0322.35041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.