×

The logarithmic Schrödinger operator and associated Dirichlet problems. (English) Zbl 1498.60183

Summary: In this note, we study the integrodifferential operator \((I - {\Delta})^{\log}\) corresponding to the logarithmic symbol \(\log(1 + | \xi |^2)\), which is a singular integral operator given by \[ (I - {\Delta})^{\log} u(x) = d_N \int_{\mathbb{R}^N} \frac{u (x) - u (x + y)}{ | y |^N} \omega(| y |) d y, \] where \(d_N = \pi^{- \frac{ N}{ 2}}, \omega(r) = 2^{1 - \frac{ N}{ 2}} r^{\frac{ N}{ 2}} K_{\frac{ N}{ 2}}(r)\) and \(K_\nu\) is the modified Bessel function of second kind with index \(\nu \). This operator is the Lévy generator of the variance gamma process and arises as derivative \(\partial_s |_{s = 0} ( I - {\Delta})^s\) of fractional relativistic Schrödinger operators at \(s = 0\). In order to study associated Dirichlet problems in bounded domains, we first introduce the functional analytic framework and some properties related to \(( I - {\Delta})^{\log} \), which allow to characterize the induced eigenvalue problem and Faber-Krahn type inequality. We also derive a decay estimate in \(\mathbb{R}^N\) of the Poisson problem and investigate small order asymptotics \(s \to 0^+\) of Dirichlet eigenvalues and eigenfunctions of \(( I - {\Delta})^s\) in a bounded open Lipschitz set.

MSC:

60G65 Nonlinear processes (e.g., \(G\)-Brownian motion, \(G\)-Lévy processes)
45K05 Integro-partial differential equations
47G10 Integral operators
45P05 Integral operators
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)

Software:

DLMF

References:

[1] Almgren, F. J.; Lieb, E. H., Symmetric decreasing rearrangement is sometimes continuous, J. Am. Math. Soc., 683-773 (1989) · Zbl 0688.46014
[2] Bass, R. F., Probabilistic Techniques in Analysis (1994), Springer Science & Business Media
[3] Beghin, L., Geometric stable processes and related fractional differential equations, Electron. Commun. Probab., 19 (2014) · Zbl 1321.60101
[4] Beghin, L., Fractional gamma and gamma-subordinated processes, Stoch. Anal. Appl., 33, 5, 903-926 (2015) · Zbl 1326.60047
[5] Bertoin, J., Lévy Processes, vol. 121 (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0861.60003
[6] Brock, F., Rearrangements and Applications to Symmetry Problems in PDE, Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, 1-60 (2007), North-Holland · Zbl 1192.35086
[7] Charão, R. C.; Piske, A.; Ikehata, R., A dissipative logarithmic-type evolution equation: asymptotic profile and optimal estimates, J. Math. Anal. Appl., 506, 1, Article 125587 pp. (2022) · Zbl 1475.35042
[8] Chen, H.; Weth, T., The Dirichlet problem for the logarithmic Laplacian, Commun. Partial Differ. Equ., 44, 11, 1100-1139 (2019) · Zbl 1423.35390
[9] Correa, E.; de Pablo, A., Nonlocal operators of order near zero, J. Math. Anal. Appl., 461, 1, 837-867 (2018) · Zbl 1393.45011
[10] Fall, M. M.; Felli, V., Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential, J. Funct. Anal., 267, 6, 1851-1877 (2014) · Zbl 1295.35377
[11] Felsinger, M.; Kassmann, M.; Voigt, P., The Dirichlet problem for nonlocal operators, Math. Z., 279, 3-4, 779-809 (2015) · Zbl 1317.47046
[12] Feulefack, P. A.; Jarohs, S.; Weth, T., Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian, J. Fourier Anal. Appl., 28, 2, 1-44 (2022) · Zbl 1485.35304
[13] Frank, R. L.; Seiringer, R., Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255, 12, 3407-3430 (2008) · Zbl 1189.26031
[14] Gaunt, R. E., Inequalities for modified Bessel functions and their integrals, J. Math. Anal. Appl., 420, 1, 373-386 (2014) · Zbl 1297.26051
[15] Grzywny, T.; Ryznar, M., Potential theory of one-dimensional geometric stable processes, Colloq. Math., 1, 129, 7-40 (2012) · Zbl 1276.60083
[16] Hernández-Santamará, V.; Saldaña, A., Small order asymptotics for nonlinear fractional problems, Calc. Var. Partial Differ. Equ., 61, 3, 1-26 (2022) · Zbl 1486.35053
[17] Jarohs, S.; Weth, T., Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl. (1923), 195, 1, 273-291 (2016) · Zbl 1346.35010
[18] Jarohs, S.; Weth, T., On the maximum principle for nonlocal operators, Math. Z., 293, 1, 81-111 (2019) · Zbl 1455.35032
[19] Jarohs, S.; Weth, T., Local compactness and nonvanishing for weakly singular nonlocal quadratic forms, Nonlinear Anal., 193, Article 111431 pp. (2020) · Zbl 1444.47064
[20] Jarohs, S.; Saldaña, A.; Weth, T., A new look at the fractional Poisson problem via the logarithmic Laplacian, J. Funct. Anal., 279, 11, Article 108732 pp. (2020) · Zbl 1450.35269
[21] Kassmann, M.; Mimica, A., Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc., 19, 4, 983-1011 (2017) · Zbl 1371.35316
[22] Kim, P.; Mimica, A., Green function estimates for subordinate Brownian motions: stable and beyond, Trans. Am. Math. Soc., 366, 8, 4383-4422 (2014) · Zbl 1327.60165
[23] Knopova, V.; Schilling, R. L., A note on the existence of transition probability densities of Lévy processes, Forum Math., 25, 1, 125-149 (2013) · Zbl 1269.60050
[24] Kozubowski, T. J.; Panorska, A. K., Multivariate geometric stable distributions in financial applications, Math. Comput. Model., 29, 10-12, 83-92 (1999) · Zbl 1098.62587
[25] Laptev, A.; Weth, T., Spectral properties of the logarithmic Laplacian, Anal. Math. Phys., 11, Article 133 pp. (2021) · Zbl 1476.35153
[26] López-Mimbela, J. A.; Privault, N., Blow-up and stability of semilinear PDEs with gamma generators, J. Math. Anal. Appl., 307, 1, 181-205 (2005) · Zbl 1112.35042
[27] Madan, D. B.; Carr, P. P.; Chang, E. C., The variance gamma process and option pricing, Rev. Finance, 2, 1, 79-105 (1998) · Zbl 0937.91052
[28] Mimica, A., On harmonic functions of symmetric Lévy processes, Ann. Inst. Henri Poincaré Probab. Stat., 50, 1, 214-235 (2014) · Zbl 1298.60054
[29] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions Hardback and CD-ROM (2010), Cambridge University Press) · Zbl 1198.00002
[30] Rao, M.; Song, R.; Vondraček, Z., Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal., 25, 1, 1-27 (2006) · Zbl 1107.60042
[31] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, vol. 1 (1993), Yverdon-les-Bains: Yverdon-les-Bains Switzerland: Gordon and Breach Science Publishers, Yverdon · Zbl 0818.26003
[32] Šikić, H.; Song, R.; Vondraček, Z., Potential theory of geometric stable processes, Probab. Theory Relat. Fields, 135, 4, 547-575 (2006) · Zbl 1099.60051
[33] Song, R.; Vondraček, Z., Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, 125, 4, 578-592 (2003) · Zbl 1022.60078
[34] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (PMS-30), vol. 30 (2016), Princeton University Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.