×

A new look at the fractional Poisson problem via the logarithmic Laplacian. (English) Zbl 1450.35269

Summary: We analyze the \(s\)-dependence of solutions \(u_s\) to the family of fractional Poisson problems \[ (-\Delta)^s u = f \quad \text{in } \Omega, \qquad u \equiv 0 \quad \text{on } \mathbb{R}^N \setminus \Omega \] in an open bounded set \(\Omega \subset \mathbb{R}^N, s \in (0, 1)\). In the case where \(\Omega\) is of class \(C^2\) and \(f \in C^\alpha (\overline{\Omega})\) for some \(\alpha > 0\), we show that the map \((0, 1) \to L^\infty (\Omega), s \mapsto u_s\) is of class \(C^1\), and we characterize the derivative \(\partial_s u_s\) in terms of the logarithmic Laplacian of \(f\). As a corollary, we derive pointwise monotonicity properties of the solution map \(s \mapsto u_s\) under suitable assumptions on \(f\) and \(\Omega\). Moreover, we derive explicit bounds for the corresponding Green operator on arbitrary bounded domains which are new even for the case \(s = 1\), i.e., for the local Dirichlet problem \(- \Delta u = f\) in \(\Omega, u \equiv 0\) on \(\partial \Omega\).

MSC:

35R11 Fractional partial differential equations
35J25 Boundary value problems for second-order elliptic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs

References:

[1] Abatangelo, N., Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35, 12, 5555-5607 (2015) · Zbl 1333.31013
[2] Abatangelo, N.; Jarohs, S.; Saldaña, A., Green function and Martin kernel for higher-order fractional Laplacians in balls, Nonlinear Anal., 175, 173-190 (2018) · Zbl 1397.35064
[3] Abatangelo, N.; Jarohs, S.; Saldaña, A., On the loss of maximum principles for higher-order fractional Laplacians, Proc. Am. Math. Soc., 146, 11, 4823-4835 (2018) · Zbl 1403.35063
[4] Abatangelo, N.; Jarohs, S.; Saldaña, A., Positive powers of the Laplacian: from hypersingular integrals to boundary value problems, Commun. Pure Appl. Anal., 17, 3, 899-922 (2018) · Zbl 1400.35091
[5] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55 (1964), U.S. Government Printing Office: U.S. Government Printing Office Washington, D.C. · Zbl 0171.38503
[6] Bartels, S.; Weber, N., Parameter learning and fractional differential operators: application in image regularization and decomposition (2020), preprint
[7] Biccari, U.; Hernández-Santamaría, V., The Poisson equation from non-local to local, Electron. J. Differ. Equ., Article 45 pp. (2018) · Zbl 1396.35066
[8] Blumenthal, R. M.; Getoor, R. K.; Ray, D. B., On the distribution of first hits for the symmetric stable processes, Trans. Am. Math. Soc., 99, 540-554 (1961) · Zbl 0118.13005
[9] Bogdan, K., Representation of α-harmonic functions in Lipschitz domains, Hiroshima Math. J., 29, 2, 227-243 (1999) · Zbl 0936.31008
[10] Bogdan, K.; Byczkowski, T., Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Stud. Math., 133, 1, 53-92 (1999) · Zbl 0923.31003
[11] Bogdan, K.; Jarohs, S.; Kania, E., Semilinear Dirichlet problem for the fractional Laplacian, Nonlinear Anal., 193, Article 111512 pp. (2020) · Zbl 1436.35171
[12] Bogdan, K.; Kulczycki, T.; Kwaśnicki, M., Estimates and structure of α-harmonic functions, Probab. Theory Relat. Fields, 140, 3-4, 345-381 (2008) · Zbl 1146.31004
[13] Bucur, C., Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15, 2, 657-699 (2016) · Zbl 1334.35383
[14] Bucur, C.; Valdinoci, E., Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20 (2016), Springer: Springer Cham, Unione Matematica Italiana, Bologna · Zbl 1377.35002
[15] Chen, H.; Weth, T., The Dirichlet problem for the logarithmic Laplacian, Commun. Partial Differ. Equ., 44, 11, 1100-1139 (2019) · Zbl 1423.35390
[16] Dipierro, S.; Grunau, H.-Ch., Boggio’s formula for fractional polyharmonic Dirichlet problems, Ann. Mat. Pura Appl. (4), 196, 4, 1327-1344 (2017) · Zbl 1380.35090
[17] Dyda, B., Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15, 4, 536-555 (2012) · Zbl 1312.35176
[18] Fall, M. M.; Weth, T., Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263, 8, 2205-2227 (2012) · Zbl 1260.35050
[19] Fall, M. M.; Weth, T., Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Commun. Contemp. Math., 18, 1, Article 1550012 pp. (2016) · Zbl 1334.35385
[20] Getoor, R. K., First passage times for symmetric stable processes in space, Trans. Am. Math. Soc., 101, 75-90 (1961) · Zbl 0104.11203
[21] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249 (2008), Springer: Springer New York · Zbl 1220.42001
[22] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics, vol. 69 (2011), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, Reprint of the 1985 original · Zbl 1231.35002
[23] Grubb, G., Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators, Adv. Math., 268, 478-528 (2015) · Zbl 1318.47064
[24] Kassmann, M.; Mimica, A., Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc., 19, 4, 983-1011 (2017) · Zbl 1371.35316
[25] Kulczycki, T., Properties of Green function of symmetric stable processes, Probab. Math. Stat., 17, 2, 339-364 (1997) · Zbl 0903.60063
[26] Landkof, N. S., Foundations of Modern Potential Theory (1972), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0253.31001
[27] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. (2), 118, 2, 349-374 (1983) · Zbl 0527.42011
[28] Lieb, E. H.; Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[29] Pellacci, B.; Verzini, G., Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol., 76, 6, 1357-1386 (2018) · Zbl 1390.35404
[30] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), 101, 3, 275-302 (2014) · Zbl 1285.35020
[31] Ros-Oton, X.; Serra, J., Regularity theory for general stable operators, J. Differ. Equ., 260, 12, 8675-8715 (2016) · Zbl 1346.35220
[32] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60, 1, 67-112 (2007) · Zbl 1141.49035
[33] Sprekels, S.; Valdinoci, E., A new type of identification problems: optimizing the fractional order in a nonlocal evolution equation, SIAM J. Control Optim., 55, 1, 70-93 (2017) · Zbl 1394.49033
[34] Talenti, G., Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 3, 4, 697-718 (1976) · Zbl 0341.35031
[35] Terracini, S.; Tortone, G.; Vita, S., On s-harmonic functions on cones, Anal. PDE, 11, 7, 1653-1691 (2018) · Zbl 1391.35401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.