×

RG flows on two-dimensional spherical defects. (English) Zbl 07906535

Summary: We study two-dimensional spherical defects in \(d\)-dimensional Conformal Field Theories. We argue that the Renormalization Group (RG) flows on such defects admit the existence of a decreasing entropy function. At the fixed points of the flow, the entropy function equals the anomaly coefficient which multiplies the Euler density in the defect’s Weyl anomaly. Our construction demonstrates an alternative derivation of the irreversibility of RG flows on two-dimensional defects. Moreover, in the case of perturbative RG flows induced by weakly relevant deformations, the entropy function decreases monotonically and plays the role of a \(C\)-function. We provide a simple example to explicitly work out the RG flow details in the proposed construction.

MSC:

81Txx Quantum field theory; related classical field theories
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
83Cxx General relativity

References:

[1] A. B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, Sov. J. Exp. Theor. Phys. Lett. 43, 730 (1986).
[2] J. L. Cardy, Is there a c-theorem in four dimensions?, Phys. Lett. B 215, 749 (1988), doi:10.1016/0370-2693(88)90054-8. · doi:10.1016/0370-2693(88)90054-8
[3] A. Cappelli, D. Friedan and J. I. Latorre, c-theorem and spectral representation, Nucl. Phys. B 352, 616 (1991), doi:10.1016/0550-3213(91)90102-4. · doi:10.1016/0550-3213(91)90102-4
[4] H. Osborn, Weyl consistency conditions and a local renormalisation group equation for general renormalisable field theories, Nucl. Phys. B 363, 486 (1991), doi:10.1016/0550-3213(91)80030-P. · doi:10.1016/0550-3213(91)80030-P
[5] R. C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, J. High Energy Phys. 01, 125 (2011), doi:10.1007/JHEP01(2011)125. · Zbl 1214.83036 · doi:10.1007/JHEP01(2011)125
[6] D. L. Jafferis, I. R. Klebanov, S. S. Pufu and B. R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, J. High Energy Phys. 06, 102 (2011), doi:10.1007/JHEP06(2011)102. · Zbl 1298.81304 · doi:10.1007/JHEP06(2011)102
[7] Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, J. High Energy Phys. 12, 099 (2011), doi:10.1007/JHEP12(2011)099. · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[8] Z. Komargodski, The constraints of conformal symmetry on RG flows, J. High Energy Phys. 07, 069 (2012), doi:10.1007/JHEP07(2012)069. · Zbl 1397.81383 · doi:10.1007/JHEP07(2012)069
[9] H. Casini and M. Huerta, Renormalization group running of the entanglement entropy of a circle, Phys. Rev. D 85, 125016 (2012), doi:10.1103/PhysRevD.85.125016. · doi:10.1103/PhysRevD.85.125016
[10] H. Elvang, D. Z. Freedman, L.-Y. Hung, M. Kiermaier, R. C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, J. High Energy Phys. 10, 011 (2012), doi:10.1007/JHEP10(2012)011. · Zbl 1397.81179 · doi:10.1007/JHEP10(2012)011
[11] K. Yonekura, Perturbative c-theorem in d-dimensions, J. High Energy Phys. 04, 011 (2013), doi:10.1007/JHEP04(2013)011. · Zbl 1342.81330 · doi:10.1007/JHEP04(2013)011
[12] B. Grinstein, A. Stergiou and D. Stone, Consequences of Weyl consistency conditions, J. High Energy Phys. 11, 195 (2013), doi:10.1007/JHEP11(2013)195. · Zbl 1342.81238 · doi:10.1007/JHEP11(2013)195
[13] I. Jack and H. Osborn, Constraints on RG flow for four dimensional quantum field theories, Nucl. Phys. B 883, 425 (2014), doi:10.1016/j.nuclphysb.2014.03.018. · Zbl 1323.81071 · doi:10.1016/j.nuclphysb.2014.03.018
[14] S. Giombi and I. R. Klebanov, Interpolating between a and F, J. High Energy Phys. 03, 117 (2015), doi:10.1007/JHEP03(2015)117. · Zbl 1388.81383 · doi:10.1007/JHEP03(2015)117
[15] I. Jack, D. R. T. Jones and C. Poole, Gradient flows in three dimensions, J. High Energy Phys. 09, 061 (2015), doi:10.1007/JHEP09(2015)061. · Zbl 1388.81843 · doi:10.1007/JHEP09(2015)061
[16] C. Córdova, T. T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories, J. High Energy Phys. 10, 080 (2016), doi:10.1007/JHEP10(2016)080. · Zbl 1390.81369 · doi:10.1007/JHEP10(2016)080
[17] H. Casini, M. Huerta, R. C. Myers and A. Yale, Mutual information and the F-theorem, J. High Energy Phys. 10, 003 (2015), doi:10.1007/JHEP10(2015)003. · Zbl 1388.81075 · doi:10.1007/JHEP10(2015)003
[18] H. Casini, E. Testé and G. Torroba, Markov property of the conformal field theory vacuum and the a-theorem, Phys. Rev. Lett. 118, 261602 (2017), doi:10.1103/PhysRevLett.118.261602. · doi:10.1103/PhysRevLett.118.261602
[19] M. Fluder and C. F. Uhlemann, Evidence for a 5d F-theorem, J. High Energy Phys. 02, 192 (2021), doi:10.1007/JHEP02(2021)192. · doi:10.1007/JHEP02(2021)192
[20] L. Delacrétaz, A. L. Fitzpatrick, E. Katz and M. Walters, Thermalization and hydro-dynamics of two-dimensional quantum field theories, SciPost Phys. 12, 119 (2022), doi:10.21468/SciPostPhys.12.4.119. · doi:10.21468/SciPostPhys.12.4.119
[21] J. L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240, 514 (1984), doi:10.1016/0550-3213(84)90241-4. · doi:10.1016/0550-3213(84)90241-4
[22] J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324, 581 (1989), doi:10.1016/0550-3213(89)90521-X. · doi:10.1016/0550-3213(89)90521-X
[23] D. M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimen-sions, Nucl. Phys. B 455, 522 (1995), doi:10.1016/0550-3213(95)00476-9. · Zbl 0925.81295 · doi:10.1016/0550-3213(95)00476-9
[24] I. Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26, 1869 (1995). · Zbl 0966.81561
[25] S. Sachdev, C. Buragohain and M. Vojta, Quantum impurity in a nearly critical two dimen-sional antiferromagnet, Science 286, 2479 (1999), doi:10.1126/science.286.5449.2479. · doi:10.1126/science.286.5449.2479
[26] M. Vojta, C. Buragohain and S. Sachdev, Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors, Phys. Rev. B 61, 15152 (2000), doi:10.1103/physrevb.61.15152. · doi:10.1103/physrevb.61.15152
[27] J. Polchinski and J. Sully, Wilson loop renormalization group flows, J. High Energy Phys. 10, 059 (2011), doi:10.1007/JHEP10(2011)059. · Zbl 1303.81123 · doi:10.1007/JHEP10(2011)059
[28] D. Gaiotto, D. Mazac and M. F. Paulos, Bootstrapping the 3d Ising twist defect, J. High Energy Phys. 03, 100 (2014), doi:10.1007/JHEP03(2014)100. · doi:10.1007/JHEP03(2014)100
[29] M. Billò, V. Goncalves, E. Lauria and M. Meineri, Defects in conformal field theory, J. High Energy Phys. 04, 001 (2016), doi:10.1007/JHEP04(2016)091. · Zbl 1388.81029 · doi:10.1007/JHEP04(2016)091
[30] L. Bianchi, M. Meineri, R. C. Myers and M. Smolkin, Rényi entropy and conformal defects, J. High Energy Phys. 07, 076 (2016), doi:10.1007/JHEP07(2016)076. · Zbl 1390.81486 · doi:10.1007/JHEP07(2016)076
[31] S. N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752, 131 (2016), doi:10.1016/j.physletb.2015.11.036. · doi:10.1016/j.physletb.2015.11.036
[32] D. V. Fursaev and S. N. Solodukhin, Anomalies, entropy, and boundaries, Phys. Rev. D 93, 084021 (2016), doi:10.1103/PhysRevD.93.084021. · doi:10.1103/PhysRevD.93.084021
[33] E. Lauria, M. Meineri and E. Trevisani, Spinning operators and defects in conformal field theory, J. High Energy Phys. 08, 066 (2019), doi:10.1007/JHEP08(2019)066. · Zbl 1421.81120 · doi:10.1007/JHEP08(2019)066
[34] A. Gadde, Conformal constraints on defects, J. High Energy Phys. 01, 038 (2020), doi:10.1007/JHEP01(2020)038. · Zbl 1434.81101 · doi:10.1007/JHEP01(2020)038
[35] C. P. Herzog and A. Shrestha, Two point functions in defect CFTs, J. High Energy Phys. 04, 226 (2021), doi:10.1007/JHEP04(2021)226. · Zbl 1462.81172 · doi:10.1007/JHEP04(2021)226
[36] S. Giombi, E. Helfenberger, Z. Ji and H. Khanchandani, Monodromy defects from hyper-bolic space, J. High Energy Phys. 02, 041 (2022), doi:10.1007/JHEP02(2022)041. · Zbl 1522.81495 · doi:10.1007/JHEP02(2022)041
[37] S. Liu, H. Shapourian, A. Vishwanath and M. A. Metlitski, Magnetic impurities at quantum critical points: Large-N expansion and connections to symmetry-protected topological states, Phys. Rev. B 104, 104201 (2021), doi:10.1103/physrevb.104.104201. · doi:10.1103/physrevb.104.104201
[38] C. P. Herzog and A. Shrestha, Conformal surface defects in Maxwell theory are trivial, J. High Energy Phys. 08, 282 (2022), doi:10.1007/JHEP08(2022)282. · Zbl 1522.81503 · doi:10.1007/JHEP08(2022)282
[39] I. Affleck and A. W. W. Ludwig, Universal noninteger “ground-state degeneracy” in critical quantum systems, Phys. Rev. Lett. 67, 161 (1991), doi:10.1103/PhysRevLett.67.161. · Zbl 0990.81566 · doi:10.1103/PhysRevLett.67.161
[40] S. Yamaguchi, Holographic RG flow on the defect and g-theorem, J. High Energy Phys. 10, 002 (2002), doi:10.1088/1126-6708/2002/10/002. · doi:10.1088/1126-6708/2002/10/002
[41] T. Azeyanagi, T. Takayanagi, A. Karch and E. G. Thompson, Holographic calcula-tion of boundary entropy, J. High Energy Phys. 03, 054 (2008), doi:10.1088/1126-6708/2008/03/054. · doi:10.1088/1126-6708/2008/03/054
[42] J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase, On holographic defect entropy, J. High Energy Phys. 05, 084 (2014), doi:10.1007/JHEP05(2014)084. · doi:10.1007/JHEP05(2014)084
[43] N. Andrei et al., Boundary and defect CFT: Open problems and applications, J. Phys. A: Math. Theor. 53, 453002 (2020), doi:10.1088/1751-8121/abb0fe. · Zbl 1519.81440 · doi:10.1088/1751-8121/abb0fe
[44] N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a c-theorem in defect CFT, J. High Energy Phys. 01, 039 (2019), doi:10.1007/JHEP01(2019)039. · Zbl 1409.81124 · doi:10.1007/JHEP01(2019)039
[45] H. Casini, I. Salazar Landea and G. Torroba, Irreversibility in quantum field theories with boundaries, J. High Energy Phys. 04, 166 (2019), doi:10.1007/JHEP04(2019)166. · Zbl 1415.81073 · doi:10.1007/JHEP04(2019)166
[46] E. Lauria, P. Liendo, B. C. van Rees and X. Zhao, Line and surface defects for the free scalar field, J. High Energy Phys. 01, 060 (2021), doi:10.1007/JHEP01(2021)060. · Zbl 1459.81075 · doi:10.1007/JHEP01(2021)060
[47] S. Giombi and H. Khanchandani, CFT in AdS and boundary RG flows, J. High Energy Phys. 11, 118 (2020), doi:10.1007/JHEP11(2020)118. · Zbl 1456.81379 · doi:10.1007/JHEP11(2020)118
[48] Y. Wang, Surface defect, anomalies and b-extremization, J. High Energy Phys. 11, 122 (2021), doi:10.1007/JHEP11(2021)122. · Zbl 1521.81364 · doi:10.1007/JHEP11(2021)122
[49] T. Nishioka and Y. Sato, Free energy and defect c-theorem in free scalar theory, J. High Energy Phys. 05, 074 (2021), doi:10.1007/JHEP05(2021)074. · Zbl 1466.81105 · doi:10.1007/JHEP05(2021)074
[50] Y. Sato, Free energy and defect c-theorem in free fermion, J. High Energy Phys. 05, 202 (2021), doi:10.1007/JHEP05(2021)202. · doi:10.1007/JHEP05(2021)202
[51] D. Friedan and A. Konechny, Boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93, 030402 (2004), doi:10.1103/PhysRevLett.93.030402. · doi:10.1103/PhysRevLett.93.030402
[52] H. Casini, I. Salazar Landea and G. Torroba, The g-theorem and quantum information theory, J. High Energy Phys. 10, 140 (2016), doi:10.1007/JHEP10(2016)140. · Zbl 1390.81094 · doi:10.1007/JHEP10(2016)140
[53] G. Cuomo, Z. Komargodski and A. Raviv-Moshe, Renormalization group flows on line defects, Phys. Rev. Lett. 128, 021603 (2022), doi:10.1103/PhysRevLett.128.021603. · doi:10.1103/PhysRevLett.128.021603
[54] H. Casini, I. Salazar Landea and G. Torroba, Entropic g-theorem in general spacetime di-mensions, Phys. Rev. Lett. 130, 111603 (2023), doi:10.1103/PhysRevLett.130.111603. · doi:10.1103/PhysRevLett.130.111603
[55] K. Jensen and A. O’Bannon, Constraint on defect and boundary renormalization group flows, Phys. Rev. Lett. 116, 091601 (2016), doi:10.1103/PhysRevLett.116.091601. · doi:10.1103/PhysRevLett.116.091601
[56] Y. Wang, Defect a-theorem and a-maximization, J. High Energy Phys. 02, 061 (2022), doi:10.1007/JHEP02(2022)061. · Zbl 1522.81579 · doi:10.1007/JHEP02(2022)061
[57] J. Padayasi, A. Krishnan, M. Metlitski, I. Gruzberg and M. Meineri, The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap, SciPost Phys. 12, 190 (2022), doi:10.21468/SciPostPhys.12.6.190. · doi:10.21468/SciPostPhys.12.6.190
[58] D. Rodriguez-Gomez, A scaling limit for line and surface defects, J. High Energy Phys. 06, 071 (2022), doi:10.1007/JHEP06(2022)071. · Zbl 1522.81531 · doi:10.1007/JHEP06(2022)071
[59] G. Cuomo, Z. Komargodski and M. Mezei, Localized magnetic field in the O(N) model, J. High Energy Phys. 02, 134 (2022), doi:10.1007/JHEP02(2022)134. · Zbl 1522.81477 · doi:10.1007/JHEP02(2022)134
[60] D. Rodriguez-Gomez and J. G. Russo, Defects in scalar field theories, RG flows and dimensional disentangling, J. High Energy Phys. 11, 167 (2022), doi:10.1007/JHEP11(2022)167. · Zbl 1536.81133 · doi:10.1007/JHEP11(2022)167
[61] L. Castiglioni, S. Penati, M. Tenser and D. Trancanelli, Interpolating Wilson loops and enriched RG flows, J. High Energy Phys. 08, 106 (2023), doi:10.1007/JHEP08(2023)106. · Zbl 07748981 · doi:10.1007/JHEP08(2023)106
[62] A. Krishnan and M. A. Metlitski, A plane defect in the 3d O(N) model, SciPost Phys. 15, 090 (2023), doi:10.21468/SciPostPhys.15.3.090. · Zbl 07905025 · doi:10.21468/SciPostPhys.15.3.090
[63] H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, J. High Energy Phys. 04, 162 (2013), doi:10.1007/JHEP04(2013)162. · Zbl 1342.81346 · doi:10.1007/JHEP04(2013)162
[64] G. Cuomo, M. Mezei and A. Raviv-Moshe, Boundary conformal field theory at large charge, J. High Energy Phys. 10, 143 (2021), doi:10.1007/JHEP10(2021)143. · Zbl 1476.81116 · doi:10.1007/JHEP10(2021)143
[65] S. N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665, 305 (2008), doi:10.1016/j.physletb.2008.05.071. · Zbl 1328.81209 · doi:10.1016/j.physletb.2008.05.071
[66] A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801, 1 (2008), doi:10.1016/j.nuclphysb.2008.04.015. · Zbl 1189.83036 · doi:10.1016/j.nuclphysb.2008.04.015
[67] C. R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546, 52 (1999), doi:10.1016/S0550-3213(99)00055-3. · Zbl 0944.81046 · doi:10.1016/S0550-3213(99)00055-3
[68] M. Henningson and K. Skenderis, Weyl anomaly for Wilson surfaces, J. High Energy Phys. 06, 012 (1999), doi:10.1088/1126-6708/1999/06/012. · Zbl 0961.81106 · doi:10.1088/1126-6708/1999/06/012
[69] M.-K. Yuan and Y. Zhou, Defect localized entropy: Renormalization group and holography, Nucl. Phys. B 994, 116301 (2023), doi:10.1016/j.nuclphysb.2023.116301. · Zbl 1531.81033 · doi:10.1016/j.nuclphysb.2023.116301
[70] I. R. Klebanov, S. S. Pufu and B. R. Safdi, F-theorem without supersymmetry, J. High Energy Phys. 10, 038 (2011), doi:10.1007/JHEP10(2011)038. · Zbl 1303.81127 · doi:10.1007/JHEP10(2011)038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.