×

On renormalization group flows and the \(a\)-theorem in 6d. (English) Zbl 1397.81179

Summary: We study the extension of the approach to the \(a\)-theorem of Komargodski and Schwimmer to quantum field theories in \(d=6\) spacetime dimensions. The dilaton effective action is obtained up to 6th order in derivatives. The anomaly flow \(a_{\text{UV}}-a_{\text{IR}}\) is the coefficient of the 6-derivative Euler anomaly term in this action. It then appears at order \(p^6\) in the low energy limit of \(n\)-point scattering amplitudes of the dilaton for \(n\geq 4\). The detailed structure with the correct anomaly coefficient is confirmed by direct calculation in two examples: (i) the case of explicitly broken conformal symmetry is illustrated by the free massive scalar field, and (ii) the case of spontaneously broken conformal symmetry is demonstrated by the \((2,0)\) theory on the Coulomb branch. In the latter example, the dilaton is a dynamical field so 4-derivative terms in the action also affect \(n\)-point amplitudes at order \(p^6\). The calculation in the \((2,0)\) theory is done by analyzing an M5-brane probe in \(\text{AdS}_7\times S^4\).

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory

References:

[1] Zamolodchikov, A., Irreversibility of the flux of the renormalization group in a 2\(D\) field theory, JETP Lett., 43, 730, (1986)
[2] Cardy, JL, Is there a c theorem in four-dimensions?, Phys. Lett., B 215, 749, (1988)
[3] Anselmi, D.; Erlich, J.; Freedman, D.; Johansen, A., Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev., D 57, 7570, (1998)
[4] Anselmi, D.; Freedman, D.; Grisaru, MT; Johansen, A., Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys., B 526, 543, (1998) · Zbl 1031.81565 · doi:10.1016/S0550-3213(98)00278-8
[5] Intriligator, KA; Wecht, B., The exact superconformal \(R\) symmetry maximizes \(a\), Nucl. Phys., B 667, 183, (2003) · Zbl 1059.81602 · doi:10.1016/S0550-3213(03)00459-0
[6] Barnes, E.; Intriligator, KA; Wecht, B.; Wright, J., Evidence for the strongest version of the 4D a-theorem, via \(a\)-maximization along RG flows, Nucl. Phys., B 702, 131, (2004) · Zbl 1198.81148 · doi:10.1016/j.nuclphysb.2004.09.016
[7] Girardello, L.; Petrini, M.; Porrati, M.; Zaffaroni, A., Novel local CFT and exact results on perturbations of \(N\) = 4 super Yang-Mills from AdS dynamics, JHEP, 12, 022, (1998) · Zbl 0949.81053 · doi:10.1088/1126-6708/1998/12/022
[8] Girardello, L.; Petrini, M.; Porrati, M.; Zaffaroni, A., The supergravity dual of \(N\) = 1 super Yang-Mills theory, Nucl. Phys., B 569, 451, (2000) · Zbl 0951.81056 · doi:10.1016/S0550-3213(99)00764-6
[9] Freedman, D.; Gubser, S.; Pilch, K.; Warner, N., Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys., 3, 363, (1999) · Zbl 0976.83067
[10] Myers, RC; Sinha, A., Seeing a c-theorem with holography, Phys. Rev., D 82, 046006, (2010)
[11] Myers, RC; Sinha, A., Holographic \(c\)-theorems in arbitrary dimensions, JHEP, 01, 125, (2011) · Zbl 1214.83036 · doi:10.1007/JHEP01(2011)125
[12] Liu, JT; Sabra, W.; Zhao, Z., Holographic \(c\)-theorems and higher derivative gravity, Phys. Rev., D 85, 126004, (2012)
[13] Komargodski, Z.; Schwimmer, A., On renormalization group flows in four dimensions, JHEP, 12, 099, (2011) · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[14] Komargodski, Z., The constraints of conformal symmetry on RG flows, JHEP, 07, 069, (2012) · Zbl 1397.81383 · doi:10.1007/JHEP07(2012)069
[15] M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, arXiv:1204.5221 [INSPIRE]. · Zbl 1342.81347
[16] Duff, MJ, Observations on conformal anomalies, Nucl. Phys., B 125, 334, (1977) · doi:10.1016/0550-3213(77)90410-2
[17] Duff, MJ, Twenty years of the Weyl anomaly, Class. Quant. Grav., 11, 1387, (1994) · Zbl 0808.53063 · doi:10.1088/0264-9381/11/6/004
[18] Deser, S.; Schwimmer, A., Geometric classification of conformal anomalies in arbitrarydimensions, Phys. Lett., B 309, 279, (1993)
[19] Anselmi, D., Anomalies, unitarity and quantum irreversibility, Annals Phys., 276, 361, (1999) · Zbl 1042.81566 · doi:10.1006/aphy.1999.5949
[20] Anselmi, D., Quantum irreversibility in arbitrary dimension, Nucl. Phys., B 567, 331, (2000) · Zbl 0973.81081 · doi:10.1016/S0550-3213(99)00479-4
[21] D. Dorigoni and V.S. Rychkov, Scale invariance + unitarity ⇒ conformal invariance?, arXiv:0910.1087 [INSPIRE].
[22] El-Showk, S.; Nakayama, Y.; Rychkov, S., What Maxwell theory in \(D\) ≠ 4 teaches us about scale and conformal invariance, Nucl. Phys., B 848, 578, (2011) · Zbl 1215.78006 · doi:10.1016/j.nuclphysb.2011.03.008
[23] Jackiw, R.; Pi, S-Y, Tutorial on scale and conformal symmetries in diverse dimensions, J. Phys., A 44, 223001, (2011) · Zbl 1268.70016
[24] Antoniadis, I.; Buican, M., On \(R\)-symmetric fixed points and superconformality, Phys. Rev., D 83, 105011, (2011)
[25] Nakayama, Y., Comments on scale invariant but non-conformal supersymmetric field theories, Int. J. Mod. Phys., A 27, 1250122, (2012) · Zbl 1258.81080
[26] Nakayama, Y., On \(ϵ\)-conjecture in \(a\)-theorem, Mod. Phys. Lett., A 27, 1250029, (2012) · Zbl 1274.81177
[27] Fortin, J-F; Grinstein, B.; Stergiou, A., Scale without conformal invariance: an example, Phys. Lett., B 704, 74, (2011)
[28] Fortin, J-F; Grinstein, B.; Stergiou, A., Scale without conformal invariance: theoretical foundations, JHEP, 07, 025, (2012) · doi:10.1007/JHEP07(2012)025
[29] Fortin, J-F; Grinstein, B.; Stergiou, A., Scale without conformal invariance at three loops, JHEP, 08, 085, (2012) · doi:10.1007/JHEP08(2012)085
[30] Polchinski, J., Scale and conformal invariance in quantum field theory, Nucl. Phys., B 303, 226, (1988) · doi:10.1016/0550-3213(88)90179-4
[31] Logunov, A.; etal., Dispersion relation for the 3 → 3 forward amplitude and generalized optical theorem, Theor. Math. Phys., 33, 935, (1978)
[32] R.J. Eden et al., The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966). · Zbl 0139.46204
[33] Maxfield, T.; Sethi, S., The conformal anomaly of \(M\) 5-branes, JHEP, 06, 075, (2012) · Zbl 1397.81269 · doi:10.1007/JHEP06(2012)075
[34] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, JHEP, 07, 023, (1998) · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[35] Bastianelli, F.; Frolov, S.; Tseytlin, AA, Conformal anomaly of (2, 0) tensor multiplet in six-dimensions and AdS/CFT correspondence, JHEP, 02, 013, (2000) · Zbl 0959.81088 · doi:10.1088/1126-6708/2000/02/013
[36] Schwimmer, A.; Theisen, S., Spontaneous breaking of conformal invariance and trace anomaly matching, Nucl. Phys., B 847, 590, (2011) · Zbl 1215.81103 · doi:10.1016/j.nuclphysb.2011.02.003
[37] Wess, J.; Zumino, B., Consequences of anomalous Ward identities, Phys. Lett., B 37, 95, (1971)
[38] Bonora, L.; Pasti, P.; Bregola, M., Weyl cocycles, Class. Quant. Grav., 3, 635, (1986) · Zbl 0615.58046 · doi:10.1088/0264-9381/3/4/018
[39] Graham, CR; Zworski, M., Scattering matrix in conformal geometry, Invent. Math., 152, 89, (2003) · Zbl 1030.58022 · doi:10.1007/s00222-002-0268-1
[40] Giddings, SB; Srednicki, M., High-energy gravitational scattering and black hole resonances, Phys. Rev., D 77, 085025, (2008)
[41] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014, (2006) · doi:10.1088/1126-6708/2006/10/014
[42] R. Penrose and W. Rindler, Spinors and spacetime, volume 2, Cambridge University Presss, Cambridge U.K. (1986). · Zbl 0591.53002 · doi:10.1017/CBO9780511524486
[43] Brown, JD; Henneaux, M., Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys., 104, 207, (1986) · Zbl 0584.53039 · doi:10.1007/BF01211590
[44] C. Fefferman and C. R. Graham, Conformal Invariants, in Elie Cartan et les Mathématiques daujourd hui Astérisque (1985) 95.
[45] C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919. · Zbl 1243.53004
[46] Imbimbo, C.; Schwimmer, A.; Theisen, S.; Yankielowicz, S., Diffeomorphisms and holographic anomalies, Class. Quant. Grav., 17, 1129, (2000) · Zbl 0952.81052 · doi:10.1088/0264-9381/17/5/322
[47] Maldacena, JM, The large-\(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231, (1998) · Zbl 0914.53047
[48] Buchbinder, I.; Petrov, AY; Tseytlin, AA, Two loop \(N\) = 4 super Yang-Mills effective action and interaction between \(D\)3-branes, Nucl. Phys., B 621, 179, (2002) · Zbl 0988.81073 · doi:10.1016/S0550-3213(01)00575-2
[49] Tseytlin, AA, \(R\)\^{}{4} terms in 11 dimensions and conformal anomaly of (2, 0) theory, Nucl. Phys., B 584, 233, (2000) · Zbl 0984.81147 · doi:10.1016/S0550-3213(00)00380-1
[50] Casini, H.; Huerta, M.; Myers, RC, Towards a derivation of holographic entanglement entropy, JHEP, 05, 036, (2011) · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[51] Jafferis, DL, The exact superconformal \(R\)-symmetry extremizes \(Z\), JHEP, 05, 159, (2012) · Zbl 1348.81420 · doi:10.1007/JHEP05(2012)159
[52] Jafferis, DL; Klebanov, IR; Pufu, SS; Safdi, BR, Towards the \(F\)-theorem: \(N\) = 2 field theories on the three-sphere, JHEP, 06, 102, (2011) · Zbl 1298.81304 · doi:10.1007/JHEP06(2011)102
[53] Klebanov, IR; Pufu, SS; Sachdev, S.; Safdi, BR, Entanglement entropy of 3\(D\) conformal gauge theories with many flavors, JHEP, 05, 036, (2012) · Zbl 1348.81321 · doi:10.1007/JHEP05(2012)036
[54] Klebanov, IR; Pufu, SS; Safdi, BR, \(F\)-theorem without supersymmetry, JHEP, 10, 038, (2011) · Zbl 1303.81127 · doi:10.1007/JHEP10(2011)038
[55] L.Y. Hung and R.C. Myers, unpublished.
[56] Graham, CR; Jenne, R.; Mason, LJ; Sparling, GAJ, Conformally invariant powers of the Laplacian, I: existence, J. London Math. Soc., 46, 557, (1992) · Zbl 0726.53010 · doi:10.1112/jlms/s2-46.3.557
[57] Branson, T., Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., 347, 3671, (1995) · Zbl 0848.58047 · doi:10.1090/S0002-9947-1995-1316845-2
[58] Kraus, P., Lectures on black holes and the AdS_{3}/CF T_{2} correspondence, Lect. Notes Phys., 755, 193, (2008) · Zbl 1155.83303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.