×

Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations. (English) Zbl 07905808

Summary: We revisit the results on admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizing these systems. For each class from the constructed chain of nested gauged classes of such systems, we single out its singular subclass, which appears to consist of systems being similar to the elementary (free particle) system whereas the regular subclass is the complement of the singular one. This allows us to exhaustively describe the equivalence groupoids of the above classes as well as of their singular and regular subclasses. Applying various algebraic techniques, we establish principal properties of Lie symmetries of the systems under consideration and outline ways for completely classifying these symmetries. In particular, we compute the sharp lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by systems from each of the above classes and subclasses. We also show how equivalence transformations and Lie symmetries can be used for reduction of order of such systems and their integration. As an illustrative example of using the theory developed, we solve the complete group classification problems for all these classes in the case of two dependent variables.

MSC:

17B80 Applications of Lie algebras and superalgebras to integrable systems
34C14 Symmetries, invariants of ordinary differential equations

References:

[1] Aminova, A. V.; Aminov, N. A.-M., Projective geometry of systems of second-order differential equations, Sb. Math., 197, 951-975, 2006 · Zbl 1143.53310
[2] Aminova, A. V.; Aminov, N. A.-M., Projective geometry theory of systems of second-order differential equations: straightening and symmetry theorems, Sb. Math., 201, 631-643, 2010 · Zbl 1209.53013
[3] Bagderina, Yu. Yu., Linearization criteria for a system of two second-order ordinary differential equations, J. Phys. A, 43, Article 465201 pp., 2010 · Zbl 1213.34056
[4] Belitskii, G., Normal forms in matrix spaces, Integral Equ. Oper. Theory, 38, 251-283, 2000 · Zbl 0971.65037
[5] Belitskii, G. R.; Sergeichuk, V. V., Complexity of matrix problems, Linear Algebra Appl., 361, 203-222, 2003 · Zbl 1030.15011
[6] Berkovich, L. M., Factorization and Transformations of the Differential Equations. Methods and Applications, 2002, RCD: RCD Moscow, (in Russian) · Zbl 1088.34032
[7] Bihlo, A.; Dos Santos Cardoso-Bihlo, E.; Popovych, R. O., Complete group classification of a class of nonlinear wave equations, J. Math. Phys., 53, Article 123515 pp., 2012 · Zbl 1282.35020
[8] Bihlo, A.; Popovych, R. O., Group classification of linear evolution equations, J. Math. Anal. Appl., 448, 982-2015, 2017 · Zbl 1368.35013
[9] Bluman, G. W.; Anco, S. C., Symmetry and Integration Methods for Differential Equations, Appl. Math. Sci., vol. 154, 2002, Springer: Springer New York · Zbl 1013.34004
[10] Bluman, G. W.; Kumei, S., Symmetries and Differential Equations, Appl. Math. Sci., vol. 81, 1989, Springer: Springer New York · Zbl 0698.35001
[11] Boyko, V. M.; Lokaziuk, O. V.; Popovych, R. O., Realizations of Lie algebras on the line and the new group classification of (1+1)-dimensional generalized nonlinear Klein-Gordon equations, Anal. Math. Phys., 11, 127, 2021 · Zbl 1472.35019
[12] Boyko, V. M.; Popovych, R. O.; Shapoval, N. M., Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients, J. Math. Anal. Appl., 397, 434-440, 2013 · Zbl 1260.34064
[13] Boyko, V. M.; Popovych, R. O.; Shapoval, N. M., Equivalence groupoids of classes of linear ordinary differential equations and their group classification, J. Phys. Conf. Ser., 621, Article 012001 pp., 2015
[14] Calogero, F., Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Phys. New Ser. m Monogr., vol. 66, 2001, Springer: Springer Berlin · Zbl 1011.70001
[15] Calogero, F., Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1419.37001
[16] Campoamor-Stursberg, R., Systems of second-order linear ODE’s with constant coefficients and their symmetries, Commun. Nonlinear Sci. Numer. Simul., 16, 3015-3023, 2011 · Zbl 1235.34108
[17] Campoamor-Stursberg, R., Systems of second-order linear ODE’s with constant coefficients and their symmetries. II. The case of non-diagonal coefficient matrices, Commun. Nonlinear Sci. Numer. Simul., 17, 1178-1193, 2012 · Zbl 1263.34045
[18] Čap, A.; Doubrov, B.; The, D., On C-class equations, Commun. Anal. Geom., 30, 2231-2266, 2022 · Zbl 1528.53012
[19] Casey, S.; Dunajski, M.; Tod, P., Twistor geometry of a pair of second order ODEs, Commun. Math. Phys., 321, 681-701, 2013 · Zbl 1277.53044
[20] Chapovskyi, Ye. Yu.; Koval, S. D.; Zhur, O., Subalgebras of Lie algebras. Example of \(\mathfrak{sl}(3, \mathbb{R})\) revisited
[21] Doubrov, B.; Medvedev, A., Fundamental invariants of systems of ODEs of higher order, Differ. Geom. Appl., 35, suppl, 291-313, 2014 · Zbl 1394.34064
[22] Doubrov, B.; Zelenko, I., Symmetries of trivial systems of ODEs of mixed order, Differ. Geom. Appl., 33, suppl, 123-143, 2014 · Zbl 1285.17012
[23] Fels, M. E., Some applications of Cartan’s method of equivalence to the geometric study of ordinary and partial differential equations, 1993, McGill University: McGill University Montréal, Ph.D. Thesis
[24] Fels, M. E., The equivalence problem for systems of second-order ordinary differential equations, Proc. Lond. Math. Soc., s3-71, 221-240, 1995 · Zbl 0833.58031
[25] Friedland, S., Simultaneous similarity of matrices, Adv. Math., 50, 189-265, 1983 · Zbl 0532.15009
[26] Fushchich, W. I.; Nikitin, A. G., Symmetries of Equations of Quantum Mechanics, 1994, Allerton Press, Inc.: Allerton Press, Inc. New York · Zbl 0863.35001
[27] Gantmacher, F. R., The Theory of Matrices, vol. I, 1959, Chelsea Publishing Co.: Chelsea Publishing Co. New York · Zbl 0085.01001
[28] González-Gascón, F.; González-López, A., Symmetries of differential equations. IV, J. Math. Phys., 24, 2006-2021, 1983 · Zbl 0564.35081
[29] González-Gascón, F.; González-López, A., New results concerning systems of differential equations and their symmetry vectors, Phys. Lett. A. Phys. Lett. A, Phys. Lett. A, 109, 465-321, 1985, Errata:
[30] González-López, A., Symmetries of linear systems of second-order ordinary differential equations, J. Math. Phys., 29, 1097-1105, 1988 · Zbl 0649.34017
[31] Gorringe, V. M.; Leach, P. G.L., Lie point symmetries for systems of second order linear ordinary differential equations, Quaest. Math., 11, 95-117, 1988 · Zbl 0649.34018
[32] Ibragimov, N. H., Group analysis of ordinary differential equations and the invariance principle in mathematical physics (on the occasion of the 150th anniversary of the birth of Sophus Lie), Russ. Math. Surv., 47, 4, 89-156, 1992
[33] Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Ser. Math. Methods Pract., vol. 4, 1999, John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester · Zbl 1047.34001
[34] Ibragimov, N. H., A Practical Course in Differential Equations and Mathematical Modelling, 2010, Higher Education Press, Beijing, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1227.00035
[35] Jacobson, N., Lie Algebras, 1962, Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0121.27504
[36] Kessy, J. A.; The, D., Symmetry gaps for higher order ordinary differential equations, J. Math. Anal. Appl., 516, Article 126475 pp., 2022 · Zbl 1509.34037
[37] Koval, S. D.; Bihlo, A.; Popovych, R. O., Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation, Eur. J. Appl. Math., 2023 · Zbl 1522.35023
[38] Koval, S. D.; Popovych, R. O., Point and generalized symmetries of the heat equation revisited, J. Math. Anal. Appl., 527, Article 127430 pp., 2023 · Zbl 1519.35012
[39] Krause, J.; Michel, L., Classification of the symmetries of ordinary differential equations, (Group Theoretical Methods in Physics. Group Theoretical Methods in Physics, Moscow, 1990. Group Theoretical Methods in Physics. Group Theoretical Methods in Physics, Moscow, 1990, Lecture Notes in Phys., vol. 382, 1991, Springer: Springer Berlin), 251-262
[40] B. Kruglikov, Privite communication, 2021.
[41] Kruglikov, B.; Matveev, V. S., Almost every path structure is not variational, Gen. Relativ. Gravit., 54, 121, 2022 · Zbl 1515.83042
[42] Kruglikov, B.; The, D., The gap phenomenon in parabolic geometries, J. Reine Angew. Math., 723, 153-215, 2017 · Zbl 1359.58019
[43] Kurujyibwami, C.; Basarab-Horwath, P.; Popovych, R. O., Algebraic method for group classification of (1+1)-dimensional linear Schrödinger equations, Acta Appl. Math., 157, 171-203, 2018 · Zbl 1409.35179
[44] Kurujyibwami, C.; Popovych, R. O., Equivalence groupoids and group classification of multidimensional nonlinear Schrödinger equations, J. Math. Anal. Appl., 491, Article 124271 pp., 2020 · Zbl 1450.37061
[45] Lie, S., Theorie der Transformationsgruppen I, Math. Ann., 16, 441-528, 1880 · JFM 12.0292.01
[46] Lie, S., Theorie der Transformationsgruppen. Erster Abschnitt, 1888, Teubner: Teubner Leipzig · JFM 20.0368.01
[47] Lie, S., Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Adwendungen, 1893, Teubner: Teubner Leipzig · JFM 25.0623.02
[48] Mahomed, F. M., Symmetry group classification of ordinary differential equations: survey of some results, Math. Methods Appl. Sci., 30, 1995-2012, 2007 · Zbl 1135.34029
[49] Mahomed, F. M.; Leach, P. G.L., Symmetry Lie algebras of nth order ordinary differential equations, J. Math. Anal. Appl., 151, 80-107, 1990 · Zbl 0719.34018
[50] Markus, L., Group Theory and Differential Equations, 1960, University of Minnesota, available at
[51] Medvedev, A., Third order ODEs systems and its characteristic connections, SIGMA, 7, Article 076 pp., 2011 · Zbl 1244.53017
[52] Meleshko, S., Comment on “Symmetry breaking of systems of linear second-order ordinary differential equations with constant coefficients”, Commun. Nonlinear Sci. Numer. Simul., 16, 3447-3450, 2011 · Zbl 1234.34027
[53] Meleshko, S. V.; Moyo, S.; Oguis, G. F., On the group classification of systems of two linear second-order ordinary differential equations with constant coefficients, J. Math. Anal. Appl., 410, 341-347, 2014 · Zbl 1316.34014
[54] Merker, J., Characterization of the Newtonian free particle system in \(m \geqslant 2\) dependent variables, Acta Appl. Math., 92, 125-207, 2006 · Zbl 1330.34016
[55] Miller, W., Symmetry and Separation of Variables, Encyclopedia Math. Appl., vol. 4, 1977, Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, MA · Zbl 0368.35002
[56] Mkhize, T. G.; Moyo, S.; Meleshko, S. V., Complete group classification of systems of two linear second-order ordinary differential equations: the algebraic approach, Math. Methods Appl. Sci., 38, 1824-1837, 2015 · Zbl 1338.34076
[57] Moyo, S.; Meleshko, S. V.; Oguis, G. F., Complete group classification of systems of two linear second-order ordinary differential equations, Commun. Nonlinear Sci. Numer. Simul., 18, 2972-2983, 2013 · Zbl 1334.34082
[58] Olver, P. J., Application of Lie Groups to Differential Equations, Grad. Texts in Math., vol. 107, 1993, Springer: Springer New York · Zbl 0785.58003
[59] Olver, P. J., Differential invariants and invariant differential equations, Lie Groups Appl., 1, 177-192, 1994 · Zbl 0922.35007
[60] Olver, P. J., Equivalence, Invariants, and Symmetry, 1995, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0837.58001
[61] Opanasenko, S.; Bihlo, A.; Popovych, R. O., Group analysis of general Burgers-Korteweg-de Vries equations, J. Math. Phys., 58, Article 081511 pp., 2017 · Zbl 1375.35457
[62] Opanasenko, S.; Popovych, R. O., Mapping method of group classification, J. Math. Anal. Appl., 513, Article 126209 pp., 2022 · Zbl 1487.35023
[63] Patera, J.; Winternitz, P., Subalgebras of real three- and four-dimensional Lie algebras, J. Math. Phys., 18, 1449-1455, 1977 · Zbl 0412.17007
[64] Popovych, R. O.; Boyko, V. M.; Nesterenko, M. O.; Lutfullin, M. W., Realizations of real low-dimensional Lie algebras, J. Phys. A, 36, 7337-7360, 2003 · Zbl 1040.17021
[65] Popovych, R. O.; Kunzinger, M.; Eshraghi, H., Admissible transformations and normalized classes of nonlinear Schrödinger equations, Acta Appl. Math., 109, 315-359, 2010 · Zbl 1216.35146
[66] Popovych, R. O.; Kunzinger, M.; Ivanova, N. M., Conservation laws and potential symmetries of linear parabolic equations, Acta Appl. Math., 100, 113-185, 2008 · Zbl 1185.35009
[67] Schwarz, F., Solving second-order differential equations with Lie symmetry, Acta Appl. Math., 60, 39-113, 2000 · Zbl 0977.34003
[68] Schwarz, F., Algorithmic Lie Theory for Solving Ordinary Differential Equations, Pure Appl. Math., vol. 291, 2008, Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1139.34003
[69] Se-ashi, Y., A geometric construction of Laguerre-Forsyth’s canonical forms of linear ordinary differential equations, (Progress in Differential Geometry. Progress in Differential Geometry, Adv. Stud. Pure Math., vol. 22, 1993, Mathematical Society of Japan: Mathematical Society of Japan Tokyo), 265-297 · Zbl 0842.34015
[70] Sergeichuk, V. V.; Galinskii, D. V., Classification of pairs of linear operators in a four-dimensional vector space, (Infinite Groups and Related Algebraic Structures, 1993, Inst. Mat. Ukrain. Akad. Nauk: Inst. Mat. Ukrain. Akad. Nauk Kyiv), 413-430, (in Russian) · Zbl 0900.15004
[71] Shapoval, N. M., The point symmetry group of a system of free second-order equations, Proceedings of NAS of Ukraine, 6, 32-36, 2014, (in Ukrainian) · Zbl 1313.34114
[72] Suksern, S.; Moyo, S.; Meleshko, S. V., Application of group analysis to classification of systems of three second-order ordinary differential equations, Math. Methods Appl. Sci., 38, 5097-5113, 2015 · Zbl 1344.34047
[73] Vaneeva, O. O.; Bihlo, A.; Popovych, R. O., Generalization of the algebraic method of group classification with application to nonlinear wave and elliptic equations, Commun. Nonlinear Sci. Numer. Simul., 91, Article 105419 pp., 2020 · Zbl 1453.35011
[74] Wafo Soh, C., Symmetry breaking of systems of linear second-order ordinary differential equations with constant coefficients, Commun. Nonlinear Sci. Numer. Simul., 15, 139-143, 2010 · Zbl 1221.34092
[75] Wafo Soh, C.; Mahomed, F. M., Symmetry breaking for a system of two linear second-order ordinary differential equations, Nonlinear Dyn., 22, 121-133, 2000 · Zbl 0961.34023
[76] Wei, J.; Norman, E., Lie algebraic solution of linear differential equations, J. Math. Phys., 4, 575-581, 1963 · Zbl 0133.34202
[77] Wei, J.; Norman, E., On global representations of the solutions of linear differential equations as a product of exponentials, Proc. Am. Math. Soc., 15, 327-334, 1964 · Zbl 0119.07202
[78] Wilczynski, E. J., Invariants of systems of linear differential equations, Transl. Am. Math. Soc., 2, 1-24, 1901 · JFM 32.0332.02
[79] Wilczynski, E. J., Projective Differential Geometry of Curves and Ruled Surfaces, 1906, B.G. Teubner: B.G. Teubner Leipzig · JFM 37.0620.02
[80] Winternitz, P., Subalgebras of Lie algebras. Example of \(\operatorname{sl}(3, \mathbb{R})\), (Symmetry in Physics. Symmetry in Physics, CRM Proc. Lecture Notes, vol. 34, 2004, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 215-227 · Zbl 1065.81069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.