×

Symmetries of linear systems of second-order ordinary differential equations. (English) Zbl 0649.34017

Summary: Several problems concerning the Lie algebra structure of symmetries and variational symmetries of a general linear system of second-order ordinary differential equations are studied. In particular, a necessary and sufficient condition is obtained, in terms of the coefficients of the system, for the system’s symmetry algebra to be of maximal dimension (i.e., n \(2+4n+3)\) and isomorphic to \(sl(n+2,{\mathbb{R}})\), the well-known symmetry algebra of the free-particle equation \(x''=0\). When this condition is satisfied, it is proved that the system is Lagrangian and that its variational symmetry algebra is isomorphic to a fixed, (n \(2+2n+6)/2\)-dimensional Lie algebra, whose structure (Levi-Mal’cev decomposition and realization by means of a matrix algebra) is determined. For the particular case of isotropic systems (which includes, as far as is known, all the examples treated in the literature), explicit formulas for the generators of both the symmetry algebra and the variational symmetry algebra are obtained.

MSC:

34A30 Linear ordinary differential equations and systems
Full Text: DOI

References:

[1] DOI: 10.1063/1.524714 · Zbl 0451.35070 · doi:10.1063/1.524714
[2] DOI: 10.1063/1.524714 · Zbl 0451.35070 · doi:10.1063/1.524714
[3] DOI: 10.1063/1.524714 · Zbl 0451.35070 · doi:10.1063/1.524714
[4] DOI: 10.1007/BF02813631 · doi:10.1007/BF02813631
[5] DOI: 10.1007/BF02786136 · doi:10.1007/BF02786136
[6] DOI: 10.1088/0305-4470/9/4/007 · Zbl 0321.34034 · doi:10.1088/0305-4470/9/4/007
[7] DOI: 10.1016/0370-1573(84)90134-0 · doi:10.1016/0370-1573(84)90134-0
[8] DOI: 10.1088/0305-4470/14/3/009 · Zbl 0458.70001 · doi:10.1088/0305-4470/14/3/009
[9] DOI: 10.1063/1.525960 · Zbl 0564.35081 · doi:10.1063/1.525960
[10] DOI: 10.1063/1.524414 · Zbl 0451.70020 · doi:10.1063/1.524414
[11] DOI: 10.1063/1.524414 · Zbl 0451.70020 · doi:10.1063/1.524414
[12] DOI: 10.1063/1.524414 · Zbl 0451.70020 · doi:10.1063/1.524414
[13] DOI: 10.1063/1.524414 · Zbl 0451.70020 · doi:10.1063/1.524414
[14] DOI: 10.1063/1.524414 · Zbl 0451.70020 · doi:10.1063/1.524414
[15] DOI: 10.1063/1.524414 · Zbl 0451.70020 · doi:10.1063/1.524414
[16] DOI: 10.1088/0305-4470/17/9/013 · Zbl 0547.22012 · doi:10.1088/0305-4470/17/9/013
[17] DOI: 10.1088/0305-4470/16/13/003 · Zbl 0543.34027 · doi:10.1088/0305-4470/16/13/003
[18] DOI: 10.1063/1.526595 · Zbl 0613.34029 · doi:10.1063/1.526595
[19] DOI: 10.1088/0305-4470/13/6/021 · Zbl 0429.22011 · doi:10.1088/0305-4470/13/6/021
[20] DOI: 10.1090/S0002-9904-1977-14317-6 · Zbl 0377.43009 · doi:10.1090/S0002-9904-1977-14317-6
[21] DOI: 10.1007/BF02743927 · Zbl 0077.37202 · doi:10.1007/BF02743927
[22] DOI: 10.1137/1023098 · Zbl 0474.70014 · doi:10.1137/1023098
[23] Pinney E., Proc. Am. Math. Soc. 1 pp 681– (1950)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.