×

Characterization of the Newtonian free particle system in \(m\geqslant 2\) dependent variables. (English) Zbl 1330.34016

Summary: We treat the problem of linearizability of a system of second order ordinary differential equations. The criterion we provide has applications to nonlinear Newtonian mechanics, especially in three-dimensional space. Let \(\mathbb K = \mathbb R\) or \(\mathbb C\), let \(x \in \mathbb K\), let \(m \geqslant 2\), let \(y := (y^1,\ldots,y^m) \in {\mathbb K}^m\) and let \[ y_{xx}^1 = F^1(x,y,y_x), \ldots, y_{xx}^m = F^m(x,y,y_x), \] be a collection of \(m\) analytic second order ordinary differential equations, in general nonlinear. We obtain a new and applicable necessary and sufficient condition in order that this system is equivalent, under a point transformation \[ (x,y^1,\ldots,y^m) \mapsto \left(X(x,y),Y^1(x,y),\ldots,Y^m(x,y)\right), \] to the Newtonian free particle system \(Y^{1}_{XX} = \cdots = Y^{m}_{XX} = 0\).
Strikingly, the explicit differential system that we obtain is of first order in the case \(m \geqslant 2\), whereas according to a classical result due to Lie, it is of second order the case of a single equation (\(m=1\)).

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
34A26 Geometric methods in ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
37C80 Symmetries, equivariant dynamical systems (MSC2010)
70H99 Hamiltonian and Lagrangian mechanics

References:

[1] Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin Heidelberg New York (1989) · Zbl 0698.35001
[2] Cartan, É.: Sur les variétés à connexion projective. Bull. Soc. Math. France 52, 205–241 (1924) · JFM 50.0500.02
[3] Chern, S.-S.: Sur la géométrie d’un système d’équations différentielles du second ordre. Bull. Sci. Math. 63, 206–212 (1939) · JFM 65.1419.01
[4] Crampin, M., Martínez, E., Sarlet, W.: Linear connections for systems of second-order ordinary differential equations. Ann. Inst. H. Poincaré, Phys. Théor. 65(2), 223–249 (1996) · Zbl 0912.58002
[5] Doubrov, B.: Contact invariants of ordinary differential equations. RIMS Kokyuroku 1150, 105–113 (2000) · Zbl 0968.58501
[6] Dridi, R., Neut, S., Petitot, M.: Élie Cartan’s geometrical vision or how to avoid expression swell, arxiv.org/abs/math.DG/0504203 · Zbl 1161.65054
[7] Fels, M.: The equivalence problem for systems of second-order ordinary differential equations. Proc. London Math. Soc. 71(2), 221–240 (1995) · Zbl 0833.58031 · doi:10.1112/plms/s3-71.1.221
[8] Gardner, R.B.: The method of equivalence and its applications. CBMS-NSF Regional Conference Series in Applied Mathematics vol 58, pp. 127 SIAM, Philadelphia (1989) · Zbl 0694.53027
[9] Gaussier, H., Merker, J.: Symmetries of partial differential equations. J. Korean Math. Soc. 40(3), 517–561 (2003) · Zbl 1033.32025 · doi:10.4134/JKMS.2003.40.3.517
[10] González Gascón, F., González López, A.: Symmetries of differential equations, IV. J. Math. Phys. 24, 2006–2021 (1983) · Zbl 0564.35081 · doi:10.1063/1.525960
[11] González López, A.: Symmetries of linear systems of second order differential equations. J. Math. Phys. 29, 1097–1105 (1988) · Zbl 0649.34017 · doi:10.1063/1.527948
[12] González López, A., Kamran, N., Olver, P.J.: Lie algebras of vector fields in the real plane. Proc. London Math. Soc. 64, 339–368 (1992) · Zbl 0872.17022 · doi:10.1112/plms/s3-64.2.339
[13] Grissom, C., Thompson, G., Wilkens, G.: Linearization of second order ordinary differential equations via Cartan’s equivalence method. J. Differential Equations 77(1), 1–15 (1989) · Zbl 0671.34012 · doi:10.1016/0022-0396(89)90154-X
[14] Grossman, D.A.: Torsion-free path geometries and integrable second order ode systems. Selecta Math., New. Ser. 6(4), 399–442 (2000) · Zbl 0997.53013 · doi:10.1007/PL00001394
[15] Hachtroudi, M.: Les espaces d’éléments à connexion projective normale. Actualités Scientifiques et Industrielles 565. Hermann & Cie, Paris (1937) · Zbl 0019.30601
[16] Hawkins, T.: Emergence of the Theory of Lie Groups. Springer, Berlin Heidelberg New York (2001) · Zbl 0986.26002
[17] Hsu, L., Kamran, N.: Classification of second order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries. Proc. London Math. Soc. 58(3), 387–416 (1989) · Zbl 0675.58046 · doi:10.1112/plms/s3-58.2.387
[18] Ibragimov, N.H.: Group analysis of ordinary differential equations and the invariance principle in mathematical physics. Russian Math. Surveys 47(4), 89–156 (1992) · Zbl 0848.34006 · doi:10.1070/RM1992v047n04ABEH000916
[19] Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations, Mathematical Methods in Practice. Wiley, Chichester (1999) (xviii+347 pp) · Zbl 1047.34001
[20] Leach, P.G.L.: \({\mathrm Sl}(3, \mathbb{R})\) and the repulsive oscillator. J. Phys. A. 13, 1991–2000 (1980) · Zbl 0429.22011 · doi:10.1088/0305-4470/13/6/021
[21] Lie, S.: Theorie der Transformationsgruppen. Math. Ann. 16, 441–528 (1880); translated in English and commented In: Ackerman, M., Hermann, R.: Sophus Lie’s 1880 Transformation Group paper, Math. Sci. Press, Brookline, Mass. (1975) · JFM 12.0292.01 · doi:10.1007/BF01446218
[22] Lie, S.: Klassifikation und Integration vo gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestaten I-IV. In: Gesammelte Abhandlungen, vol. 5, pp. 240–310, 362–427, 432–448. B.G. Teubner, Leipzig (1924)
[23] Mahomed, F.M., Soh, C.W.: Linearization criteria for a system of second-order differential equations. Internat J. Non.-Linear Mech. 36(4), 671–677 (2001) · Zbl 1345.34012 · doi:10.1016/S0020-7462(00)00032-9
[24] Mardare, S.: On isometric immersions of a Riemannian space under a weak regularity assumption. C. R. Acad. Sci. Paris, Sér. I. 337, 785–790 (2003) · Zbl 1066.53104
[25] Merker, J.: Explicit differential characterization of PDE systems pointwise equivalent to \(Y_{ X^{j_1} X^{ j_2} } = 0\) , \(1\leqslant j_1, j_2 \leqslant n\geqslant 2\) , arxiv.org/abs/math.DG/0411637
[26] Neut, S.: Implantation et nouvelles applications de la méthode d’équivalence d’Élie Cartan, Thèse, Université Lille 1, October 2003
[27] Nurowsky, P., Sparling, G.A.J.: 3-dimensional Cauchy-Riemann structures and 2nd order ordinary differential equations, e-print arXiv:math.DG/0306331
[28] Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin Heidelberg New York (1986)(xxvi+497 pp.) · Zbl 0588.22001
[29] Olver, P.J.: Equivalence, Invariance and Symmetries. Cambridge University Press, Cambridge (1995)(xvi+525 pp) · Zbl 0837.58001
[30] Sternberg, S.: Differential Geometry. Chelsea, New York (1982) · Zbl 0501.65056
[31] Stormark, O.: Lie’s structural approach to PDE systems. In: Encyclopædia of Mathematics and its Applications, vol. 80. Cambridge University Press, Cambridge (2000)(xv+572 pp) · Zbl 0959.35004
[32] Tresse, A.: Détermination des Invariants Ponctuels de l’équation Différentielle du Second Ordre y”={\(\omega\)}(x,y,y’). Hirzel, Leipzig (1896) · JFM 27.0254.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.