×

Spatial dynamics of a generalized cholera model with nonlocal time delay in a heterogeneous environment. (English) Zbl 07901383

This work formulates a generalized cholera model with nonlocal time delays to explore the impact of bacterial hyperinfectivity on cholera epidemics in spatially heterogeneous environments. It addresses significant mathematical challenges by simultaneously considering the growth of hyperinfectious and lower-infectious states of V. cholerae. The authors introduce three basic reproduction numbers for hyperinfectious, lower-infectious, and overall cholera disease, establishing global threshold dynamics. Notably, they find that the basic reproduction number of infection decreases with the diffusion coefficients of infectious hosts under certain conditions.

MSC:

35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
37C75 Stability theory for smooth dynamical systems
92B05 General biology and biomathematics
92D30 Epidemiology
Full Text: DOI

References:

[1] Ali, M.; Nelson, A. R.; Lopez, A. L., Updated global burden of cholera in endemic countries, PLoS Negl. Trop. Dis., 9, 6, Article e0003832 pp., 2015
[2] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control, 1991, Oxford University Press
[3] Andrews, J. R.; Basu, S., Transmission dynamics and control of cholera in Haiti: an epidemic model, Lancet, 377, 9773, 1248-1255, 2011
[4] Bertuzzo, E.; Casagrandi, R.; Gatto, M., On spatially explicit models of cholera epidemics, J. R. Soc. Interface, 7, 43, 321-333, 2010
[5] Botelho, C.; Kong, J. D.; Lucien, M. A., A mathematical model for Vibrio-phage interactions, Math. Biosci. Eng., 18, 3, 2688-2712, 2021 · Zbl 1471.92092
[6] Cui, R.; Lam, K. Y.; Lou, Y., Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equ., 263, 4, 2343-2373, 2017 · Zbl 1388.35086
[7] Cai, L.; Fan, G.; Yang, C., Modeling and analyzing cholera transmission dynamics with vaccination age, J. Franklin Inst., 357, 12, 8008-8034, 2020 · Zbl 1447.92216
[8] Cai, L.; Li, Z.; Yang, C., Global analysis of an environmental disease transmission model linking within-host and between-host dynamics, Appl. Math. Model., 86, 404-423, 2020 · Zbl 1481.92133
[9] Capasso, V.; Paveri-Fontana, S. L., A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. épidémiol. Santé Publique, 27, 2, 121-132, 1979
[10] Capasso, V.; Maddalena, L., Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13, 173-184, 1981 · Zbl 0468.92016
[11] Codeço, C. T., Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1, 1, 1-14, 2001
[12] Du, Z.; Peng, R., A priori \(L^\infty\) estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72, 6, 1429-1439, 2016 · Zbl 1338.35220
[13] Du, Y., Order Structure and Topological Methods in Nonlinear Partial Differential Equations, vol 1. Maximum Principles and Applications, 2006, World Scientific · Zbl 1202.35043
[14] Fitzgibbon, W. E.; Morgan, J. J.; Webb, G. F., An outbreak vector-host epidemic model with spatial structure: the 2015-2016 Zika outbreak in Rio De Janeiro, Theor. Biol. Med. Model., 14, 1, 1-17, 2017
[15] Guo, Z.; Wang, F. B.; Zou, X., Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65, 6-7, 1387-1410, 2012 · Zbl 1257.35105
[16] Hale, J. K., Asymptotic Behavior of Dissipative Systems, 1987, Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 0657.35014
[17] Hale, J. K.; Waltman, P., Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20, 2, 388-395, 1989 · Zbl 0692.34053
[18] Hartley, D. M.; Morris, J. G.; Smith, D. L., Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics?, PLoS Med., 3, 1, e7, 2006
[19] Hsu, S.; Jiang, J.; Wang, F., On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differ. Equ., 248, 10, 2470-2496, 2010 · Zbl 1185.92089
[20] Jensen, M. A.; Faruque, S. M.; Mekalanos, J. J., Modeling the role of bacteriophage in the control of cholera outbreaks, Proc. Natl. Acad. Sci., 103, 12, 4652-4657, 2006 · Zbl 1355.92115
[21] Joh, R. I.; Wang, H.; Weiss, H., Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bull. Math. Biol., 71, 845-862, 2009 · Zbl 1163.92026
[22] Kerscher, W.; Nagel, R., Asymptotic behavior of one-parameter semigroups of positive operators, (Positive Semigroups of Operators, and Applications, 1984), 297-309 · Zbl 0562.47031
[23] Koelle, K.; Rodó, X.; Pascual, M., Refractory periods and climate forcing in cholera dynamics, Nature, 436, 7051, 696-700, 2005
[24] Kong, J. D.; Davis, W.; Wang, H., Dynamics of a cholera transmission model with immunological threshold and natural phage control in reservoir, Bull. Math. Biol., 76, 8, 2025-2051, 2014 · Zbl 1300.92102
[25] Kong, J. D.; Davis, W.; Li, X., Stability and sensitivity analysis of the iSIR model for indirectly transmitted infectious diseases with immunological threshold, SIAM J. Appl. Math., 74, 5, 1418-1441, 2014 · Zbl 1310.34055
[26] Lou, Y.; Zhao, X. Q., A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62, 4, 543-568, 2011 · Zbl 1232.92057
[27] Luo, J.; Wang, J.; Wang, H., Seasonal forcing and exponential threshold incidence in cholera dynamics, Discrete Contin. Dyn. Syst., Ser. B, 22, 6, 2261-2290, 2017 · Zbl 1383.92089
[28] Magal, P.; Zhao, X. Q., Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37, 1, 251-275, 2005 · Zbl 1128.37016
[29] Martin, R. H.; Smith, H. L., Abstract functional-differential equations and reaction-diffusion systems, Trans. Am. Math. Soc., 321, 1, 1-44, 1990 · Zbl 0722.35046
[30] Metz, J. A.; Diekmann, O., The Dynamics of Physiologically Structured Populations, vol. 68, 1986, Springer · Zbl 0614.92014
[31] Mukandavire, Z.; Liao, S.; Wang, J., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci., 108, 21, 8767-8772, 2011
[32] Nelson, E. J.; Harris, J. B.; Glenn Morris, J., Cholera transmission: the host, pathogen and bacteriophage dynamic, Nat. Rev. Microbiol., 7, 10, 693-702, 2009
[33] Nussbaum, R. D., Eigenvectors of Nonlinear Positive Operators and the Linear Krein-Rutman Theorem, 309-330, 1981, Springer · Zbl 0489.47037
[34] Robertson, S. L.; Eisenberg, M. C.; Tien, J. H., Heterogeneity in multiple transmission pathways: modelling the spread of cholera and other waterborne disease in networks with a common water source, J. Biol. Dyn., 7, 1, 254-275, 2013 · Zbl 1448.92333
[35] Pascual, M.; Koelle, K.; Dobson, A. P., Hyperinfectivity in cholera: a new mechanism for an old epidemiological model?, PLoS Med., 3, 6, e280, 2006
[36] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983, Springer: Springer Berlin · Zbl 0516.47023
[37] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations, 1984, Springer: Springer New York · Zbl 0549.35002
[38] Shu, H.; Ma, Z.; Wang, X. S., Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment, J. Math. Biol., 83, 1-33, 2021 · Zbl 1471.92349
[39] Shu, H.; Ma, Z.; Wang, H., Diffusive host-pathogen model revisited: nonlocal infections, incubation period and spatial heterogeneity, J. Math. Anal. Appl., 516, 1, Article 126477 pp., 2022 · Zbl 1498.92258
[40] Shuai, Z.; Tien, J. H.; Van den Driessche, P., Cholera models with hyperinfectivity and temporary immunity, Bull. Math. Biol., 74, 10, 2423-2445, 2012 · Zbl 1312.92041
[41] Smith, H. L., Monotone dynamical systems, (An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41, 1995, American Mathematical Society) · Zbl 0821.34003
[42] Smith, H.; Zhao, X. Q., Robust persistence for semidynamical systems, Nonlinear Anal., Theory Methods Appl., 47, 9, 6169-6179, 2001 · Zbl 1042.37504
[43] Thieme, H. R., Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30, 7, 755-763, 1992 · Zbl 0761.34039
[44] Thieme, H. R., Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70, 1, 188-211, 2009 · Zbl 1191.47089
[45] Tien, J. H.; Earn, D. J.D., Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72, 1506-1533, 2010 · Zbl 1198.92030
[46] Tuite, A. R.; Tien, J.; Eisenberg, M., Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med., 154, 9, 593-601, 2011
[47] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1-2, 29-48, 2002 · Zbl 1015.92036
[48] December 2017, WHO Cholera Fact Sheet number 107
[49] 2022, World Health Organization, Cholera
[50] Wang, F. B.; Shi, J.; Zou, X., Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. Anal., 14, 6, 2535-2560, 2015 · Zbl 1328.35104
[51] Wang, F. B., A system of partial differential equations modeling the competition for two complementary resources in flowing habitats, J. Differ. Equ., 249, 11, 2866-2888, 2010 · Zbl 1198.92048
[52] Wang, J.; Xie, F.; Kuniya, T., Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment, Commun. Nonlinear Sci. Numer. Simul., 80, Article 104951 pp., 2020 · Zbl 1451.92317
[53] Wang, J.; Wu, X., Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates, J. Dyn. Differ. Equ., 35, 2, 1205-1241, 2023 · Zbl 1518.92165
[54] Wang, X.; Wang, F. B., Impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environment, J. Math. Anal. Appl., 480, 2, Article 123407 pp., 2019 · Zbl 1423.92241
[55] Wang, X.; Zhao, X. Q.; Wang, J., A cholera epidemic model in a spatiotemporally heterogeneous environment, J. Math. Anal. Appl., 468, 2, 893-912, 2018 · Zbl 1400.92552
[56] Wang, X.; Wu, R.; Zhao, X. Q., A reaction-advection-diffusion model of cholera epidemics with seasonality and human behavior change, J. Math. Biol., 84, 5, 34, 2022 · Zbl 1492.35383
[57] Wang, W.; Zhao, X. Q., Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11, 4, 1652-1673, 2012 · Zbl 1259.35120
[58] Wang, W.; Feng, Z., Global dynamics of a diffusive viral infection model with spatial heterogeneity, Nonlinear Anal., Real World Appl., 72, Article 103763 pp., 2022 · Zbl 1517.35124
[59] Wang, W.; Wu, G.; Wang, X., Dynamics of a reaction-advection-diffusion model for cholera transmission with human behavior change, J. Differ. Equ., 373, 176-215, 2023 · Zbl 1522.92077
[60] Wu, J., Theory and Applications of Partial Functional Differential Equations, 1996, Springer: Springer New York · Zbl 0870.35116
[61] Yang, Y.; Zou, L.; Zhou, J., Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate, Nonlinear Anal., Real World Appl., 53, Article 103065 pp., 2020 · Zbl 1431.35215
[62] Zhou, J.; Yang, Y.; Zhang, T., Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate, J. Math. Anal. Appl., 466, 1, 835-859, 2018 · Zbl 1391.37061
[63] Zhou, M.; Wang, W.; Fan, X., Threshold dynamics of a reaction-diffusion equation model for cholera transmission with waning vaccine-induced immunity and seasonality, Z. Angew. Math. Phys., 73, 5, 190, 2022 · Zbl 1496.35402
[64] Zhao, X. Q., Dynamical Systems in Population Biology, 2nd edn., 2017, Springer: Springer Cham · Zbl 1393.37003
[65] Zhao, X. Q., Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29, 1, 67-82, 2017 · Zbl 1365.34145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.