×

Modeling the role of bacteriophage in the control of cholera outbreaks. (English) Zbl 1355.92115

Summary: Cholera is a waterborne diarrheal disease that continues to plague the developing world. Individuals become infected by consuming water from reservoirs contaminated by virulent strains of the bacterium Vibrio cholerae. Epidemiological and environmental observations of a cholera outbreak in Dhaka, Bangladesh, suggest that lytic bacteriophage specific for V. cholerae may limit the severity of cholera outbreaks by killing bacteria present in the reservoir and in infected individuals. To quantify this idea and generate testable hypotheses, we analyzed a mathematical model that combines the epidemiology of cholera with the population dynamics of the bacteria and phage. Under biologically reasonable conditions, we found that vibriophage can ameliorate cholera outbreaks. If phage predation limits bacterial density before an outbreak, a transient reduction in phage density can disrupt that limitation, and subsequent bacterial growth can initiate a cholera outbreak. The severity of the outbreak depends on the density of phage remaining in the reservoir. If the outbreak is initiated instead by a rise in bacterial density, the introduction of phage can reduce the severity of the outbreak and promote its decline. In both situations, the magnitude of the phage effect depends mainly on vibrio growth and phage mortality rates; the lower the rates, the greater the effect. Our analysis also suggests that either bacteria in the environmental reservoir are hyperinfectious or most victims ingest bacteria amplified in food or drinking water contaminated by environmental water carrying few viable V. cholerae. Our theoretical results make a number of empirically testable predictions.

MSC:

92D30 Epidemiology

References:

[1] Waldor, Science 272 (5270) pp 1910– (1996) · doi:10.1126/science.272.5270.1910
[2] Colwell, Science 198 (4315) pp 394– (1977) · doi:10.1126/science.910135
[3] Colwell, Applied and Environmental Microbiology 41 (2) pp 555– (1981)
[4] Koelle, Nature; Physical Science (London) 436 (7051) pp 696– (2005) · doi:10.1038/nature03820
[5] Lipp, Clinical Microbiology Reviews 15 (4) pp 757– (2002) · doi:10.1128/CMR.15.4.757-770.2002
[6] Pascual, Science 289 (5485) pp 1766– (2000) · doi:10.1126/science.289.5485.1766
[7] PNAS 102 (5) pp 1702– (2005) · doi:10.1073/pnas.0408992102
[8] Capasso, Revue d’  pid  miologie et de sant   publique 27 (2) pp 121– (1979)
[9] Code  o, BMC infectious diseases [electronic resource] 1 pp 1– (2001) · doi:10.1186/1471-2334-1-1
[10] Huq, Applied and Environmental Microbiology 56 (8) pp 2370– (1990)
[11] Journal of Infectious Diseases 129 (1) pp 45– (1974) · doi:10.1093/infdis/129.1.45
[12] Merrell, Nature; Physical Science (London) 417 (6889) pp 642– (2002) · doi:10.1038/nature00778
[13] 107 pp 171– (1973) · doi:10.1086/282825
[14] Ecology 58 pp 369– (1977) · doi:10.2307/1935611
[15] 111 pp 3– (1977) · doi:10.1086/283134
[16] PNAS 102 (17) pp 6119– (2005) · doi:10.1073/pnas.0502069102
[17] Monod, Annual review of microbiology 3 pp 371– (1949) · doi:10.1146/annurev.mi.03.100149.002103
[18] Brayton, Applied and Environmental Microbiology 53 (12) pp 2862– (1987)
[19] Monsur, Bulletin of the World Health Organization 42 (5) pp 723– (1970)
[20] Agtini, BMC infectious diseases [electronic resource] 5 pp 89– (2005) · doi:10.1186/1471-2334-5-89
[21] Mourino-Perez, Applied and Environmental Microbiology 69 (11) pp 6923– (2003) · doi:10.1128/AEM.69.11.6923-6931.2003
[22] Chakrabarti, Journal of General Virology 77 (11) pp 2881– (1996) · doi:10.1099/0022-1317-77-11-2881
[23] Chattopadhyay, Journal of General Virology 68 (5) pp 1411– (1987) · doi:10.1099/0022-1317-68-5-1411
[24] Sinton, Applied and Environmental Microbiology 65 (8) pp 3605– (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.