×

Heterogeneity in multiple transmission pathways: modelling the spread of cholera and other waterborne disease in networks with a common water source. (English) Zbl 1448.92333

Summary: Many factors influencing disease transmission vary throughout and across populations. For diseases spread through multiple transmission pathways, sources of variation may affect each transmission pathway differently. In this paper we consider a disease that can be spread via direct and indirect transmission, such as the waterborne disease cholera. Specifically, we consider a system of multiple patches with direct transmission occurring entirely within patch and indirect transmission via a single shared water source. We investigate the effect of heterogeneity in dual transmission pathways on the spread of the disease. We first present a 2-patch model for which we examine the effect of variation in each pathway separately and propose a measure of heterogeneity that incorporates both transmission mechanisms and is predictive of \(R_0\). We also explore how heterogeneity affects the final outbreak size and the efficacy of intervention measures. We conclude by extending several results to a more general \(n\)-patch setting.

MSC:

92D30 Epidemiology

Software:

Matlab

References:

[1] F.R. Adler, The effects of averaging on the basic reproduction ratio, Math. Biosci. 111 (1992), pp. 89-98. doi: 10.1016/0025-5564(92)90080-G[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0781.92026
[2] M.J. Albert, M. Neira, and Y. Motarjemi, The role of food in the epidemiology of cholera, World Health Stat. Q 50 (1997), pp. 111-118. [PubMed], [Google Scholar]
[3] L.J.S. Allen and G.E. Lahodny, Extinction thresholds in deterministic and stochastic epidemic models, J. Biol. Dyn. 6(2) (2012), pp. 590-611. doi: 10.1080/17513758.2012.665502[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1447.92388
[4] D. Butler, Cholera tightens grip on Haiti, Nature 468 (2010), pp. 483-484. doi: 10.1038/468483a[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[5] R.R. Colwell, Global climate and infectious disease: The cholera paradigm, Science 274 (1996), pp. 2025-2031. doi: 10.1126/science.274.5295.2025[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[6] A. Cravioto, C. Lanata, D.S. Lantagne, and G.B. Nair, Final report of the independent panel of experts on the cholera outbreak in Haiti, 2011. Available at http://www.un.org/News/dh/infocus/haiti/UN-cholera-report-final.pdf[Google Scholar]
[7] O. Diekmann, and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation, Wiley, New York, 2000. [Google Scholar] · Zbl 0997.92505
[8] J. Dushoff, and S. Levin, The effects of population heterogeneity on disease invasion, Math. Biosci. 128 (1995), pp. 25-40. doi: 10.1016/0025-5564(94)00065-8[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0832.92019
[9] M.C. Eisenberg, G. Kujbida, A.R. Tuite, D.N. Fisman, and J.H. Tien, Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches, Epidemics (2013). Available at http://dx.doi.org/10.1016/j.epidem.2013.09.004[PubMed], [Google Scholar] · doi:10.1016/j.epidem.2013.09.004
[10] M.C. Eisenberg, S.L. Robertson, and J.H. Tien, Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease, J. Theor. Biol. 324(7) (2013), pp. 84-102. doi: 10.1016/j.jtbi.2012.12.021[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1314.92156
[11] M.C. Eisenberg, Z. Shuai, J.H. Tien, and P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci. (2013). Available at http://www.sciencedirect.com/science/article/pii/S0025556413001880[PubMed], [Google Scholar] · Zbl 1309.92073
[12] N.H. Gaffga, R.V. Tauxe, and E.D. Mintz, Cholera: A new homeland in Africa? Am. J. Trop. Med. Hyg. 77(4) (2007), pp. 705-713. [Google Scholar]
[13] S. Giebultowicz, M. Ali, M. Yunus, and M. Emch, A comparison of spatial and social clustering of cholera in Matlab, Bangladesh, Health Place 17 (2011), pp. 490-499. doi: 10.1016/j.healthplace.2010.12.004[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[14] R. Glass, Endemic cholera in rural Bangladesh, 1066-1980, Am. J. Epidemiol. 116(6) (1982), pp. 959-970. [Web of Science ®], [Google Scholar]
[15] K.T. Goh, S.H. Teo, S. Lam, and M.K. Ling, Person-to-person transmission of cholera in a psychiatric hospital, J. Infect. 20(3) (1990), pp. 193-200. [Google Scholar]
[16] D. Hartley, J. Morris, and D. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3 (2006), pp. 63-69. doi: 10.1371/journal.pmed.0030007[Crossref], [Web of Science ®], [Google Scholar]
[17] J.A.P. Heesterbeek and M.G. Roberts, The type-reproduction number T in models for infectious disease control, Math. Biosci. 206 (2007), pp. 3-10. doi: 10.1016/j.mbs.2004.10.013[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1124.92043
[18] S.D. Holmberg, D.E. Kay, R.D. Parker, N. Rao, J.R. Harris, N.T. Hargrett, N. Kansou, and P. Blake, Food borne transmission of cholera in micronesian households, Lancet 323(8372) (1984), pp. 325-328. [Google Scholar]
[19] M.S. Islam, B.S. Drasar, and R.B. Sack, Probable role of blue-green algae in maintaining endemicity and seasonality of cholera in Bangladesh: A hypothesis, J. Diarrhoeal Dis. Res. 12(4) (1994), pp. 245-256. [PubMed], [Google Scholar]
[20] C.R. Johnson, D.P. Stanford, D.D. Olesky, and P. van den Driessche, Dominant eigenvalues under trace-preserving diagonal perturbations, Linear Algebra Appl. 212/213 (1994), pp. 415-435. [Google Scholar] · Zbl 0815.15020
[21] J. Ma and D.J.D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68 (2006), pp. 679-702. doi: 10.1007/s11538-005-9047-7[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1334.92419
[22] R.M. May and R.M. Anderson, Transmission dynamics of HIV infection, Nature 326 (1987), pp. 137-142. doi: 10.1038/326137a0[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[23] J. Mendelsohn and T. Dawson, Climate and cholera in KwaZulu-Natal, South Africa: The role of environmental factors and implications for epidemic preparedness, Int. J. Hygiene Environ. Health 211 (2008), pp. 156-162. [Google Scholar]
[24] Ministry of Public Health of the Dominican Republic. Weekly epidemiological bulletin number 51. December 24, 2011 (in Spanish). Available at: http://www.sespasdigepi.gob.do/documentos/Boletin Semanal 2011/BoletinEpidemiologicoSemanal-SE51-2011.pdf, 2012. [Google Scholar]
[25] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, and J. Glenn Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. R. Acad. Sci. 108 21 (2011), pp. 8767-8772. [Google Scholar]
[26] Z. Mukandavire, D.L. Smith, and J.G. MorrisJr, Cholera in Haiti: Reproductive numbers and vaccination coverage estimates, Sci. Rep. 3(997) (2013). [Google Scholar]
[27] M.R. Periago, T.R. Frieden, J.W. Tappero, K.M.D. Cock, B. Aasen, and J.K. Andrus, Elimination of cholera transmission in Haiti and the Dominican Republic, Lancet 379(9812) (2012), pp. e12-e13. [Google Scholar]
[28] R. Piarroux, R. Barrais, B. Faucher, R. Haus, M. Piarroux, J. Gaudart, R. Magloire, and D. Raoult, Understanding the cholera epidemic, Haiti, Emerging Infect. Dis. 17(7) (2011), pp. 1161-1168. [Google Scholar]
[29] G.H. Rabbani and W.B. Greenough III, Food as a vehicle of transmission of cholera, J. Diarrhoeal Dis. Res. 17 (1999), pp. 1-9. [PubMed], [Google Scholar]
[30] R.C. Reiner, A.A. King, M. Emch, M. Yunus, A.S.G. Faruque, and M. Pascual, Highly localized sensitivity to climate forcing drives endemic cholera in a megacity, Proc. Nat. Acad. Sci. 109(6) (2012), pp. 2033-2036. doi: 10.1073/pnas.1108438109[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[31] M.G. Roberts and J.A.P. Heesterbeek, A new method for estimating the effort required to control an infectious disease, Proc. R. Soc. London B 270(1522) (2003), pp. 1359-1364. doi: 10.1098/rspb.2003.2339[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[32] E.T. Ryan, Haiti in the context of the current global cholera pandemic, Emerging Infect. Dis. 17(11) (2011), pp. 2175-2178. doi: 10.3201/eid1711.110849[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[33] J. Snow, The cholera near Golden Square, and at Deptford, Med. Times Gaz. 9 (1854), pp. 321-322. [Google Scholar]
[34] E.B. Steinberg, K.D. Greene, C.A. Bopp, D.N. Cameron, J.G. Wells, and E.D. Mintz, Cholera in the United States, 1995-2000: Trends at the end of the twentieth century, J. Infect. Dis. 184(6) (2001), pp. 799-802. [Web of Science ®], [Google Scholar]
[35] D. Swerdlow, E. Mintz, M. Rodriguez, E. Tejada, C. Ocampo, L. Espejo, K. Greene, W. Saldana, L. Seminario, R. Tauxe, J. Wells, N. Bean, A. Ries, M. Pollack, B. Vertiz, and P. Blake, Waterborne transmission of epidemic cholera in Trujillo, Peru: Lessons for a continent at risk, Lancet 340 (1992), pp. 28-32. [Google Scholar]
[36] J. Tien and D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol. 72 (2010), pp. 1506-1533. doi: 10.1007/s11538-010-9507-6[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1198.92030
[37] J.H. Tien, Z. Shuai, M.C. Eisenberg, and P. van den Driessche, Disease invasion on community networks with environmental pathogen movement, preprint (2013), submitted for publication. [Google Scholar]
[38] A.R. Tuite, J. Tien, M. Eisenberg, D.J.D. Earn, J. Ma, and D.N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Internal Med. 154(9) (2011), pp. 593-601. doi: 10.7326/0003-4819-154-9-201105030-00334[Crossref], [PubMed], [Google Scholar]
[39] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29-42. doi: 10.1016/S0025-5564(02)00108-6[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1015.92036
[40] J. Wang, and S. Liao, A generalized cholera model and epidemic-endemic analysis, J. Biol. Dyn. 6(2) (2012), pp. 568-589. doi: 10.1080/17513758.2012.658089[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1447.92485
[41] WHO. Cholera annual report 2006, Weekly Epidemiol. Rec. 82 (2007), pp. 273-284. [Google Scholar]
[42] World Health Organization (WHO). Cholera fact sheet n-107. Available at http://www.who.int/mediacentre/factsheets/fs107/en/index.html, 2010. [Google Scholar]
[43] J.A. Yorke, H.W. Hethcote, and A. Nold, Dynamics and control of the transmission of gonorrhea, Sex. Transm. Dis. 5 (1978), pp. 51-56. doi: 10.1097/00007435-197804000-00003[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.