×

Fine multibubble analysis in the higher-dimensional Brezis-Nirenberg problem. (English) Zbl 07896319

This article is concerned with the study of positive solutions to \(-\Delta u+\varepsilon V u=N(N-2)u^{\frac{N+2}{N-2}}\) in a bounded open set \(\Omega\subset\mathbb{R}^N\), \(N\geq 4\). The solutions are assumed to satisfy an homogeneous Dirichlet boundary condition while the potential \(V\in C^1(\overline{\Omega})\) is negative. The main result of the article establishes the existence of solutions exhibiting multiple concentration points. It is shown that such concentration points are isolated and the authors provide a characterization of the vector of these points as a critical point of a suitable function derived from the Green function of \(-\Delta\) on \(\Omega\).

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth. J. Differential Equations 70 (1987), no. 3, 349-365 Zbl 0657.35058 MR 915493 · Zbl 0657.35058 · doi:10.1016/0022-0396(87)90156-2
[2] T. Aubin, Some nonlinear problems in Riemannian geometry. Springer Monogr. Math., Springer, Berlin, 1998 Zbl 0896.53003 MR 1636569 · Zbl 0896.53003 · doi:10.1007/978-3-662-13006-3
[3] A. Bahri, Y. Li, and O. Rey, On a variational problem with lack of compactness: The topolog-ical effect of the critical points at infinity. Calc. Var. Partial Differential Equations 3 (1995), no. 1, 67-93 Zbl 0814.35032 MR 1384837 · Zbl 0814.35032 · doi:10.1007/BF01190892
[4] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477 Zbl 0541.35029 MR 709644 · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[5] H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth. In Partial differential equations and the calculus of variations, Vol. I, pp. 149-192, Progr. Non-linear Differ. Equ. Appl. 1, Birkhäuser Boston, Boston, MA, 1989 Zbl 0685.35013 MR 1034005 · Zbl 0685.35013 · doi:10.1007/978-1-4615-9828-2_7
[6] C. Budd, Semilinear elliptic equations with near critical growth rates. Proc. Roy. Soc. Edin-burgh Sect. A 107 (1987), no. 3-4, 249-270 Zbl 0662.35003 MR 924520 · Zbl 0662.35003 · doi:10.1017/S0308210500031140
[7] L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilin-ear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42 (1989), no. 3, 271-297 Zbl 0702.35085 MR 982351 · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[8] E. N. Dancer, Some notes on the method of moving planes. Bull. Austral. Math. Soc. 46 (1992), no. 3, 425-434 Zbl 0777.35005 MR 1190345 · Zbl 0777.35005 · doi:10.1017/S0004972700012089
[9] M. del Pino, J. Dolbeault, and M. Musso, The Brezis-Nirenberg problem near criticality in dimension 3. J. Math. Pures Appl. (9) 83 (2004), no. 12, 1405-1456 Zbl 1130.35040 MR 2103187 · Zbl 1130.35040 · doi:10.1016/j.matpur.2004.02.007
[10] O. Druet and E. Hebey, Elliptic equations of Yamabe type. IMRS Int. Math. Res. Surv. (2005), no. 1, 1-113 Zbl 1081.53034 MR 2148873 · Zbl 1081.53034 · doi:10.1155/imrs.2005.1
[11] O. Druet and E. Hebey, Stability for strongly coupled critical elliptic systems in a fully inho-mogeneous medium. Anal. PDE 2 (2009), no. 3, 305-359 Zbl 1208.58025 MR 2603801 · Zbl 1208.58025 · doi:10.2140/apde.2009.2.305
[12] O. Druet, E. Hebey, and F. Robert, Blow-up theory for elliptic PDEs in Riemannian geometry. Math. Notes (Princeton) 45, Princeton University Press, Princeton, NJ, 2004 Zbl 1059.58017 MR 2063399 · Zbl 1059.58017
[13] O. Druet and P. Laurain, Stability of the Pohožaev obstruction in dimension 3. J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1117-1149 Zbl 1210.35105 MR 2677612 · Zbl 1210.35105 · doi:10.4171/JEMS/225
[14] R. L. Frank, T. König, and H. Kovařík, Energy asymptotics in the Brezis-Nirenberg problem: The higher-dimensional case. Math. Eng. 2 (2020), no. 1, 119-140 Zbl 07622489 MR 4139446 · Zbl 1537.35031 · doi:10.3934/mine.2020007
[15] R. L. Frank, T. König, and H. Kovařík, Blow-up of solutions of critical elliptic equations in three dimensions. 2021, arXiv:2102.10525
[16] R. L. Frank, T. König, and H. Kovařík, Energy asymptotics in the three-dimensional Brezis-Nirenberg problem. Calc. Var. Partial Differential Equations 60 (2021), no. 2, article no. 58 Zbl 07325918 MR 4218367 · Zbl 1511.35123 · doi:10.1007/s00526-021-01929-3
[17] M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains. J. Funct. Anal. 259 (2010), no. 4, 904-917 Zbl 1195.35147 MR 2652176 · Zbl 1195.35147 · doi:10.1016/j.jfa.2010.03.008
[18] Q. Han and F. Lin, Elliptic partial differential equations. Courant Lecture Notes in Mathemat-ics 1, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997 Zbl 1051.35031 MR 1669352 · Zbl 1052.35505
[19] Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré C Anal. Non Linéaire 8 (1991), no. 2, 159-174 Zbl 0729.35014 MR 1096602 · Zbl 0729.35014 · doi:10.1016/S0294-1449(16)30270-0
[20] T. König and P. Laurain, Constant Q-curvature metrics with a singularity. Trans. Amer. Math. Soc. 375 (2022), no. 4, 2915-2948 Zbl 1485.35169 MR 4391737 · Zbl 1485.35169
[21] T. König and P. Laurain, Multibubble blow-up analysis for the Brezis-Nirenberg problem in three dimensions. 2022, arXiv:2208.12337
[22] E. H. Lieb and M. Loss, Analysis. 2nd edn., Grad. Stud. Math. 14, American Mathematical Society, Providence, RI, 2001 Zbl 0966.26002 MR 1817225 · Zbl 0966.26002 · doi:10.1090/gsm/014
[23] R. Molle and A. Pistoia, Concentration phenomena in elliptic problems with critical and super-critical growth. Adv. Differential Equations 8 (2003), no. 5, 547-570 Zbl 1290.35103 MR 1972490 · Zbl 1290.35103
[24] M. Musso and A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 51 (2002), no. 3, 541-579 Zbl 1074.35037 MR 1911045 · Zbl 1074.35037 · doi:10.1512/iumj.2002.51.2199
[25] M. Musso and D. Salazar, Multispike solutions for the Brezis-Nirenberg problem in dimension three. J. Differential Equations 264 (2018), no. 11, 6663-6709 Zbl 1394.35145 MR 3771821 · Zbl 1394.35145 · doi:10.1016/j.jde.2018.01.046
[26] S. I. Pohožaev, On the eigenfunctions of the equation u C f .u/ D 0. Dokl. Akad. Nauk SSSR 165 (1965), 36-39 Zbl 0141.30202 MR 0192184
[27] B. Premoselli, Towers of bubbles for Yamabe-type equations and for the Brézis-Nirenberg problem in dimensions n 7. J. Geom. Anal. 32 (2022), no. 3, article no. 73 Zbl 1487.35206 MR 4363746 · Zbl 1487.35206 · doi:10.1007/s12220-021-00836-5
[28] O. Rey, Proof of two conjectures of H. Brézis and L. A. Peletier. Manuscripta Math. 65 (1989), no. 1, 19-37 Zbl 0708.35032 MR 1006624 · Zbl 0708.35032 · doi:10.1007/BF01168364
[29] O. Rey, Concentration of solutions to elliptic equations with critical nonlinearity. Ann. Inst. H. Poincaré C Anal. Non Linéaire 9 (1992), no. 2, 201-218 Zbl 0761.35034 MR 1160849 · Zbl 0761.35034 · doi:10.1016/S0294-1449(16)30245-1
[30] O. Rey, The topological impact of critical points at infinity in a variational problem with lack of compactness: The dimension 3. Adv. Differential Equations 4 (1999), no. 4, 581-616 Zbl 0952.35051 MR 1693274 · Zbl 0952.35051 · doi:10.57262/ade/1411134018
[31] F. Robert, Existence and optimal asymptotics for the Green’s function of second order elliptic operators (in French). Available at httpsW//iecl.univ-lorraine.fr/files/2021/04/ConstrucGreen. pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.