×

Energy asymptotics in the three-dimensional Brezis-Nirenberg problem. (English) Zbl 1511.35123

Summary: For a bounded open set \(\Omega \subset \mathbb{R}^3\) we consider the minimization problem \[ S(a+\epsilon V) = \inf_{0\not \equiv u\in H^1_0(\Omega)} \frac{\int_\Omega (|\nabla u|^2+ (a+\epsilon V) |u|^2)\,dx}{(\int_\Omega u^6\,dx)^{1/3}} \] involving the critical Sobolev exponent. The function \(a\) is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on \(a\) and \(V\) we compute the asymptotics of \(S(a+\epsilon V)-S\) as \(\epsilon\rightarrow 0+\), where \(S\) is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to \(a\) and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have \(S(a+\epsilon V)<S\) for all sufficiently small \(\epsilon >0\).

MSC:

35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Amar, M.; Garroni, A., \( \Gamma \)-convergence of concentration problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, 1, 151-179 (2003) · Zbl 1121.35048
[2] Atkinson, FV; Peletier, LA, Elliptic equations with nearly critical growth, J. Differ. Equ., 70, 3, 349-365 (1987) · Zbl 0657.35058 · doi:10.1016/0022-0396(87)90156-2
[3] Aubin, T., Problèmes isoperimétriques et espaces de Sobolev, J. Differ. Geom., 11, 573-598 (1976) · Zbl 0371.46011 · doi:10.4310/jdg/1214433725
[4] Bahri, A., Critical Points at Infinity in Some Variational Problems. Pitman Research Notes in Mathematics Series (1989), Harlow: Longman Scientific & Technical, Harlow · Zbl 0676.58021
[5] Bahri, A.; Coron, J-M, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Commun. Pure Appl. Math., 41, 3, 253-294 (1988) · Zbl 0649.35033 · doi:10.1002/cpa.3160410302
[6] Brézis, H., Elliptic equations with limiting Sobolev exponents-the impact of topology. Frontiers of the mathematical sciences: 1985 (New York, 1985), Commun. Pure Appl. Math., 39, S suppl, S17-S39 (1986) · Zbl 0601.35043 · doi:10.1002/cpa.3160390704
[7] Brézis, H.; Lieb, EH, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[8] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[9] Brézis, H., Peletier, L.A.: Asymptotics for elliptic equations involving critical growth. In: Partial Differential Equations and the Calculus of Variations, vol. I, pp. 149-192. Progress in Nonlinear Differential Equations Applications, vol. 1. Birkhäuser Boston, Boston, MA (1989) · Zbl 0685.35013
[10] Budd, C., Semilinear elliptic equations with near critical growth rates, Proc. R. Soc. Edinb. Sect. A, 107, 3-4, 249-270 (1987) · Zbl 0662.35003 · doi:10.1017/S0308210500031140
[11] Davies, EB, Heat Kernels and Spectral Theory (1989), Cambridge: Cambridge University Press, Cambridge · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[12] Druet, O., Elliptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. H. Poincaré-AN, 19, 125-142 (2002) · Zbl 1011.35060 · doi:10.1016/S0294-1449(02)00095-1
[13] Druet, O.; Hebey, E.; Robert, F., Blow-up Theory for Elliptic PDEs in Riemannian Geometry. Mathematical Notes (2004), Princeton: Princeton University Press, Princeton · Zbl 1059.58017 · doi:10.1515/9781400826162
[14] Ekholm, T.; Frank, RL; Kovařík, H., Weak perturbations of the \(p\)-Laplacian, Calc. Var. Partial Differ. Equ., 53, 3-4, 781-801 (2015) · Zbl 1322.49076 · doi:10.1007/s00526-014-0767-0
[15] Esposito, P., On some conjectures proposed by Haim Brezis, Nonlinear Anal., 54, 751-759 (2004) · Zbl 1134.35045 · doi:10.1016/j.na.2003.10.012
[16] Flucher, M.: Variational problems with concentration. In: Progress in Nonlinear Differential Equations and their Applications, vol. 36. Birkhäuser Verlag, Basel (1999) · Zbl 0940.35006
[17] Flucher, M.; Garroni, A.; Müller, S., Concentration of low energy extremals: identification of concentration points, Calc. Var. Partial Differ. Equ., 14, 4, 483-516 (2002) · Zbl 1004.35040 · doi:10.1007/s005260100112
[18] Frank, RL; König, T.; Kovařík, H., Energy asymptotics in the Brezis-Nirenberg problem. The higher-dimensional case, Math. Eng., 2, 1, 119-140 (2020) · Zbl 1537.35031 · doi:10.3934/mine.2020007
[19] Han, Z-C, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8, 2, 159-174 (1991) · Zbl 0729.35014 · doi:10.1016/S0294-1449(16)30270-0
[20] Hebey, E.; Vaugon, M., From best constants to critical functions, Math. Z., 237, 4, 737-767 (2001) · Zbl 0992.58016 · doi:10.1007/PL00004889
[21] Lieb, E.H., Loss, M.: Analysis, 2nd edn. In: Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001) · Zbl 0966.26002
[22] Lions, P-L, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1, 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[23] Rey, O., Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscr. Math., 65, 19-37 (1989) · Zbl 0708.35032 · doi:10.1007/BF01168364
[24] Rey, O., The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89, 1-52 (1990) · Zbl 0786.35059 · doi:10.1016/0022-1236(90)90002-3
[25] Rodemich, E.: The Sobolev inequality with best possible constant. In: Analysis Seminar Caltech, Spring (1966)
[26] Rosen, G., Minimum value for \(c\) in the Sobolev inequality \(\Vert \phi^3\Vert \le c\Vert \nabla \phi \Vert^3\), SIAM J. Appl. Math., 21, 30-32 (1971) · Zbl 0201.38704 · doi:10.1137/0121004
[27] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20, 2, 479-495 (1984) · Zbl 0576.53028 · doi:10.4310/jdg/1214439291
[28] Simon, B., The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Phys., 97, 279-288 (1976) · Zbl 0325.35029 · doi:10.1016/0003-4916(76)90038-5
[29] Struwe, M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187, 4, 511-517 (1984) · Zbl 0535.35025 · doi:10.1007/BF01174186
[30] Takahashi, F., On the location of blow up points of least energy solutions to the Brezis-Nirenberg equation, Funkcial. Ekvac., 47, 1, 145-166 (2004) · Zbl 1155.35006 · doi:10.1619/fesi.47.145
[31] Talenti, G., Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372 (1976) · Zbl 0353.46018 · doi:10.1007/BF02418013
[32] Wei, J., Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical exponent, J. Math. Soc. Jpn., 50, 1, 139-153 (1998) · Zbl 0906.35016 · doi:10.2969/jmsj/05010139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.