Skip to main content
Log in

Towers of Bubbles for Yamabe-Type Equations and for the Brézis–Nirenberg Problem in Dimensions \(n \ge 7\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let (Mg) be a closed locally conformally flat Riemannian manifold of dimension \(n \ge 7\) and of positive Yamabe type. If \(h \in C^1(M)\) and \(\xi _0\) is a non-degenerate critical point of the mass function we prove the existence, for any \( k \ge 1\) of a positive blowing-up solution \(u_\varepsilon \) of

$$\begin{aligned} \triangle _g u_\varepsilon +\big ( c_n S_g +\varepsilon h\big ) u_\varepsilon = u_\varepsilon ^{2^*-1} \end{aligned}$$

that blows up, as \(\varepsilon \rightarrow 0\), like the superposition of k positive bubbles concentrating at different speeds at \(\xi _0\). The method of proof combines a finite-dimensional reduction with the sharp pointwise analysis of solutions of a linear problem. As another application of this method of proof we construct sign-changing blowing-up solutions \(u_\varepsilon \) for the Brézis–Nirenberg problem

$$\begin{aligned} \triangle _{\xi } u_\varepsilon - \varepsilon u_\varepsilon = |u_\varepsilon |^{\frac{4}{n-2}} u_\varepsilon \text { in } \Omega , \quad u_\varepsilon = 0 \text { on } \partial \varOmega \end{aligned}$$

on a smooth bounded open set \(\varOmega \subset {\mathbb {R}}^n\), \(n \ge 7\), that look like the superposition of k positive bubbles of alternating sign as \(\varepsilon \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \({ R}^n\). Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  2. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Ayed, M.B., El Mehdi, K., Pacella, F.: Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(4), 567–589 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ayed, M.B., El Mehdi, K., Pacella, F.: Blow-up and symmetry of sign-changing solutions to some critical elliptic equations. J. Differ. Equ. 230(2), 771–795 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. 21(4), 951–979 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brendle, S., Marques, F.C.: Blow-up phenomena for the Yamabe equation. II. J. Differ. Geom. 81(2), 225–250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cerqueti, K.: A uniqueness result for a semilinear elliptic equation involving the critical Sobolev exponent in symmetric domains. Asymptot. Anal. 21(2), 99–115 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Druet, O.: From one bubble to several bubbles: the low-dimensional case. J. Differ. Geom. 63(3), 399–473 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Druet, O.: Compactness for Yamabe metrics in low dimensions. Int. Math. Res. Not. 23, 1143–1191 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Druet, O., Hebey, E., Robert, F.: Blow-up Theory for Elliptic PDEs in Riemannian Geometry. Mathematical Notes, vol. 45. Princeton University Press, Princeton (2004)

    MATH  Google Scholar 

  12. Esposito, P., Ghoussoub, N., Pistoia, A., Vaira, G.: Sign-changing solutions for critical equations with hardy potential. Anal. PDE (to appear)

  13. Esposito, P., Pistoia, A., Vétois, J.: The effect of linear perturbations on the Yamabe problem. Math. Ann. 358(1–2), 511–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hebey, E.: Compactness and Stability for Nonlinear Elliptic Equations. Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich (2014)

    Book  MATH  Google Scholar 

  15. Iacopetti, A.: Asymptotic analysis for radial sign-changing solutions of the Brezis–Nirenberg problem. Ann. Mat. Pura Appl. (4) 194(6), 1649–1682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iacopetti, A., Pacella, F.: A nonexistence result for sign-changing solutions of the Brezis–Nirenberg problem in low dimensions. J. Differ. Equ. 258(12), 4180–4208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iacopetti, A., Vaira, G.: Sign-changing tower of bubbles for the Brezis–Nirenberg problem. Commun. Contemp. Math. 18(1), 1550036, 53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iacopetti, A., Vaira, G.: Sign-changing blowing-up solutions for the Brezis–Nirenberg problem in dimensions four and five. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(1), 1–38 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Khuri, M.A., Marques, F.C., Schoen, R.M.: A compactness theorem for the Yamabe problem. J. Differ. Geom. 81(1), 143–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y.Y.: Prescribing scalar curvature on \(S^n\) and related problems. I. J. Differ. Equ. 120(2), 319–410 (1995)

    MATH  Google Scholar 

  22. Li, Y.Y., Zhang, L.: Compactness of solutions to the Yamabe problem. III. J. Funct. Anal. 245(2), 438–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y.: Prescribing scalar curvature on \(S^n\) and related problems. II. Existence and compactness. Commun. Pure Appl. Math. 49(6), 541–597 (1996)

    MATH  Google Scholar 

  24. Li, Y., Zhu, M.: Yamabe type equations on three-dimensional Riemannian manifolds. Commun. Contemp. Math. 1(1), 1–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marques, F.C.: A priori estimates for the Yamabe problem in the non-locally conformally flat case. J. Differ. Geom. 71(2), 315–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Micheletti, A.M., Pistoia, A.: Non degeneracy of critical points of the Robin function with respect to deformations of the domain. Potential Anal. 40(2), 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morabito, F., Pistoia, A., Vaira, G.: Towering phenomena for the Yamabe equation on symmetric manifolds. Potential Anal. 47(1), 53–102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Musso, M., Pistoia, A.: Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 51(3), 541–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pures Appl. (9) 93(1), 1–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pistoia, A., Vaira, G.: Clustering phenomena for linear perturbation of the Yamabe equation. In: Partial Differential Equations Arising from Physics and Geometry, London Mathematical Society Lecture Note Series, vol. 450, pp. 311–331. Cambridge University Press, Cambridge (2019)

  31. Premoselli, B.: A pointwise finite-dimensional reduction method for a fully coupled system of Einstein–Lichnerowicz type. Commun. Contemp. Math. 20(6), 1750076, 72 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Premoselli, B.: A pointwise finite-dimensional reduction method for Einstein–Lichnerowicz-type systems: the six-dimensional case. Nonlinear Anal. 172, 200–215 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Premoselli, B., Thizy, P.-D.: Bubbling above the threshold of the scalar curvature in dimensions four and five. Calc. Var. Partial Differ. Equ. 57(6), 39 (2018). (Paper No. 147)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rey, O., Wei, J.: Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity. J. Eur. Math. Soc. 7(4), 449–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Robert, F.: Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d’ordre deux. http://www.iecn.u-nancy.fr/~frobert/ConstrucGreen.pdf

  37. Robert, F., Vétois, J.: Examples of non-isolated blow-up for perturbations of the scalar curvature equation on non-locally conformally flat manifolds. J. Differ. Geom. 98(2), 349–356 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Robert, F., Vétois, J: A general theorem for the construction of blowing-up solutions to some elliptic nonlinear equations with Lyapunov–Schmidt’s finite-dimensional reduction. In: Concentration Compactness and Profile Decomposition (Bangalore, 2011), Trends in Mathematics, pp. 85–116. Springer, Basel (2014)

  39. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schoen, Richard M.: Lecture notes from courses at stanford, (1988), Written by D. Pollack, preprint

  41. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thizy, P.-D., Vétois, J.: Positive clusters for smooth perturbations of a critical elliptic equation in dimensions four and five. J. Funct. Anal. 275(1), 170–195 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  44. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author warmly thanks A. Pistoia for many fruitful and motivating discussions during the preparation of this work, and in particular for pointing out the possible application to the Brézis–Nirenberg problem, which led to Theorem 1.2. The author was supported by a FNRS CdR Grant J.0135.19 and by the Fonds Thélam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Premoselli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Technical Results

Appendix A: Technical Results

We keep the notations of Sect. 2. The integer \(k\ge 1\) refers to the number of bubbles.

1.1 A.1. Proof of (2.21) and (2.22)

Let \(1 \le i < j \le k\) and \(0 \le p,q \le n\). We first prove (2.21). We write for this, using (2.14), (2.19) and (2.20) and since \(|Z_{i,p}| \lesssim W_i\), that

$$\begin{aligned} \begin{aligned} \langle Z_{i,p}, Z_{i,q}\rangle&= \int _M \big ( \triangle _g + c_n S_g + \varepsilon h) Z_{i,p} Z_{i,q}\mathrm{d}v_g \\&= (2^*-1) \int _M W_i^{2^*-2} Z_{i,p} Z_{i,q} \mathrm{d }v_g + O(\int _M W_i^2 \mathrm{d}v_g) \\&= (2^*-1) \int _M W_i^{2^*-2} Z_{i,p} Z_{i,q} \mathrm{d}v_g + O(\mu _i^2). \end{aligned} \end{aligned}$$

Letting \(y = \exp _{\xi _i}^{g_{\xi _i}}(\mu _i x)\) and using the conformal invariance of the conformal laplacian and (2.4) we get:

$$\begin{aligned}\begin{aligned} \int _M W_i^{2^*-2} Z_{i,p} Z_{i,q} \mathrm{d}v_g&= \int _{B_{g_{\xi _i}}(\xi _i, r_0)} W_i^{2^*-2} Z_{i,p} Z_{i,q} \mathrm{d}v_g + O(\mu _i^n) \\&= \int _{B\left( 0, \frac{r_0}{\mu _i}\right) } U_0^{2^*-2} V_p V_q \mathrm{d}x + O(\mu _i^4) \\&= \int _{{\mathbb {R}}^n} U_0^{2^*-2} V_p V_q \mathrm{d}x + O(\mu _i^4) \\&= \Vert \nabla V_p \Vert _{L^2({\mathbb {R}}^n)}^2 \delta _{pq}+ O(\mu _i^4), \end{aligned} \end{aligned}$$

where \(r_0\) is as in (2.3), which proves (2.21).

We now prove (2.22). With (2.19) and (2.20) we have:

$$\begin{aligned} \begin{aligned}&\langle Z_{i,p}, Z_{j,q} \rangle \\&\quad = \int _M \Big [ \triangle _gZ_{j,q} + (c_n S_g + \varepsilon h) Z_{j,q} \Big ] Z_{i,p} \mathrm{d}v_g \\&\quad = (2^*-1) \int _M W_j^{2^*-2} Z_{j,q}Z_{i,p} \mathrm{d}v_g+\int _M \Big ( \varepsilon Z_{j,q}Z_{i,p} + O \big (\mu _j W_j |Z_{i,q}|\big ) \Big ) \mathrm{d}v_g \\&\quad = O \left( \left( \frac{\mu _j}{\mu _i} \right) ^{\frac{n-2}{2}} \right) , \end{aligned} \end{aligned}$$

where we just used the rough estimate \(|Z_{i,p}| \lesssim \mu _i^{1 - \frac{n}{2}}\).

1.2 A.2. Additional Material

We prove two inequalities that were used several times throughout the proof.

Lemma A.1

Let \(i \in \{1, \dots , k\},\) and \(x \in M\). We have:

$$\begin{aligned} \begin{aligned}&\text { If } 0 \le p < n-4: \\&\int _{B_i\backslash B_{i+1}} d_g(x, \cdot )^{2-n} W_i^{2^*-2} \left( \frac{\mu _i}{\theta _i} \right) ^p \mathrm{d}v_g \\&\quad \lesssim \left\{ \begin{aligned}&\left( \frac{\mu _i}{\theta _i(x)} \right) ^{p+2}&\text { if } x \in B_i, \\&\mu _i^{\frac{p+2}{2}} \mu _{i-1}^{\frac{n-4-p}{2}} W_i (x)&\text { if } x \in M \backslash B_i, \end{aligned} \right. \\&\text { If } p > n-4: \\&\int _{B_i\backslash B_{i+1}} d_g(x, \cdot )^{2-n} W_i^{2^*-2} \left( \frac{\mu _i}{\theta _i} \right) ^p \mathrm{d}v_g \lesssim \left( \frac{\mu _i}{\theta _i(x)} \right) ^{n-2} = \mu _i^\frac{n-2}{2}W_i(x) , \\ \end{aligned} \end{aligned}$$
(A.1)

where \(\theta _i \) is as in (2.18).

Proof

Assume first that \(d_{g_{\xi _i}}(\xi _i, x) \le 2 \sqrt{\mu _i \mu _{i-1}}\). Then \(W_i^{2^*-2} \lesssim \mu _i^2 \theta _i(x)^{-4}\), where \(\theta _i\) is as in (2.18). If \(0 \le p < n-4\), the result follows from Giraud’s lemma. While if \(p > n-4\) letting \(y = \exp _{\xi _i}^{g_{\xi _i}}(\mu _i z)\) in the integral and \({\check{x}} = \frac{1}{\mu _i} {\exp _{\xi _i}^{g_{\xi _i}}}^{-1}(x)\) yields:

$$\begin{aligned}\begin{aligned} \int _{B_i\backslash B_{i+1}} d_g(x, \cdot )^{2-n} W_i^{2^*-2} \left( \frac{\mu _i}{\theta _i} \right) ^p\mathrm{d}v_g&\lesssim \int _{{\mathbb {R}}^n} |{\check{x}}-z|^{2-n} (1+|z|)^{-n-2}\mathrm{d}z \\&\lesssim \frac{1}{(1+|{\check{x}}|)^{n-2}} \lesssim \left( \frac{\mu _i}{\theta _i(x)} \right) ^{n-2}. \end{aligned} \end{aligned}$$

Assume then that \(d_{g_{\xi _i}}(\xi _i, x) \ge 2 \sqrt{\mu _{i-1}\mu _i}\) (note that this only makes sense for \( i\ge 2\)). Then for any \(y \in B_i\) one has \(d_g(x,y) > rsim d_g(x, \xi _i) > rsim \theta _i(x)\). If \(p < n-4\) we then have

$$\begin{aligned} \begin{aligned} \int _{B_i\backslash B_{i+1}} d_g(x, \cdot )^{2-n} W_i^{2^*-2} \left( \frac{\mu _i}{\theta _i} \right) ^p\mathrm{d}v_g&\lesssim \theta _i(x)^{2-n} \int _{B_i} W_i^{2^*-2} \left( \frac{\mu _i}{\theta _i} \right) ^p\\&= \theta _i(x)^{2-n} \mu _i^{p+2} (\mu _i \mu _{i-1})^{\frac{n-4-p}{2}} \\&= \mu _i^{\frac{p+2}{2}} \mu _{i-1}^{\frac{n-4-p}{2}} W_i (x), \end{aligned} \end{aligned}$$

while if \(p > n-4\) we have

$$\begin{aligned} \begin{aligned} \int _{B_i\backslash B_{i+1}} d_g(x, \cdot )^{2-n} W_i^{2^*-2} \left( \frac{\mu _i}{\theta _i} \right) ^p\mathrm{d}v_g&\lesssim \theta _i(x)^{2-n} \int _{B_i} W_i^{2^*-2} \left( \frac{\mu _i}{\theta _i} \right) ^p\\&= \theta _i(x)^{2-n} \mu _i^{n-2} \int _{{\mathbb {R}}^n} (1+|y|)^{-p-4} \mathrm{d}y \\&\lesssim \left( \frac{\mu _i}{\theta _i(x)}\right) ^{n-2}. \end{aligned} \end{aligned}$$

Note finally that, in the intermediate case \(\sqrt{\mu _{i-1}\mu _i} \le d_{g_{\xi _i}}(\xi _i, x) \le 2 \sqrt{\mu _{i-1}\mu _i}\) we have

$$\begin{aligned} \left( \frac{\mu _i}{\theta _i(x)} \right) ^{p+2} \sim \left( \frac{\mu _i}{\mu _{i-1}}\right) ^{\frac{p+2}{2}} \sim \mu _i^{\frac{p+2}{2}} \mu _{i-1}^{\frac{n-4-p}{2}} W_i (x) \end{aligned}$$

and this holds true for \(0 \le p \le n-4\), so that the result follows. \(\square \)

Lemma A.2

For any \(i, j \in \{1, \dots , k\}\), \(i < j,\) and any \(x \in M,\) we have

$$\begin{aligned} \begin{aligned}&\int _{B_{i} \backslash B_{i+1}} W_i^{2^*-2} W_j d_g(x,\cdot )^{2-n}\mathrm{d}v_g \\&\quad \lesssim \left\{ \begin{array}{ll} \left( \frac{\mu _j}{\mu _{i+1}} \right) ^{\frac{n-2}{2}} \frac{\mu _{i+1}}{\mu _i} \mu _i^{1 - \frac{n}{2}} &{} \text {if } x \in B_{i+1}, \\ \left( \frac{\mu _j}{\mu _i} \right) ^{\frac{n-2}{2}} W_i(x) &{} \text {if } x \in B_i \backslash B_{i+1} \text { and } \theta _j(x) \ge \mu _i , \\ \frac{\theta _j(x)^2}{\mu _{i}^2} W_j(x) &{} \text {if } x \in B_i \backslash B_{i+1} \text { and } \theta _j(x) \le \mu _i ,\\ \left( \frac{\mu _j}{\mu _i} \right) ^{\frac{n-2}{2}} W_i(x) &{} \text {if } x \in M \backslash B_i . \end{array} \right. \\ \end{aligned} \end{aligned}$$
(A.2)

Proof

Assume first that \(d_{g_{\xi _i}}(\xi _i, x) \ge \sqrt{\mu _i \mu _{i-1}}\), that is \(x \in M \backslash B_i\) (this case is empty if \(i=1\)). Changing variables in the integral by \(y = \exp _{\xi _i}^{g_{\xi _i}}(\mu _i x)\) and using Giraud’s lemma yields in this case

$$\begin{aligned} \int _{B_{i} \backslash B_{i+1}} W_i^{2^*-2} W_j d_g(x,\cdot )^{2-n} \mathrm{d}v_g \lesssim \theta _i(x)^{2-n} \mu _j^{\frac{n-2}{2}} = \left( \frac{\mu _j}{\mu _i} \right) ^{\frac{n-2}{2}} W_i(x) . \end{aligned}$$

Assume now that \(x \in B_{i+1}\), so in particular \(\theta _j(x) \lesssim \sqrt{\mu _{i+1} \mu _i}\) by (2.18). We let the change of variables

$$\begin{aligned} y = \exp _{\xi _j}^{g_{\xi _j}}(\theta _j(x) z) \end{aligned}$$

in the integral. By (2.10) one has

$$\begin{aligned} \begin{aligned}&\int _{B_{i} \backslash B_{i+1}} W_i^{2^*-2} W_j d_g(x,\cdot )^{2-n}\mathrm{d}v_g \\&\quad \lesssim \mu _i^{-2} \mu _j^{\frac{n-2}{2}} \theta _j(x)^{4-n} \\&\qquad \times \int _{B_0 \left( 2\frac{\sqrt{\mu _{i-1}\mu _i}}{\theta _j(x)} \right) \backslash B_0 \left( \frac{1}{2} \frac{\sqrt{\mu _{i+1}\mu _i}}{\theta _j(x)} \right) } |{\check{x}}_i - z|^{2-n} \Big ( \frac{\mu _j}{\theta _j(x)} + |z|\Big ) ^{2-n} \mathrm{d}z, \end{aligned} \end{aligned}$$

where we have let \({\check{x}}_i= \frac{1}{\theta _j(x)} (\exp _{\xi _j}^{g_{\xi _j}})^{-1}(x)\). As is easily checked, the previous integral is always uniformly integrable whatever the value of \(\theta _j(x)\) is, and there holds \(|{\check{x}}_i| \le 1\) by definition of \(\theta _j\). So that in the end

$$\begin{aligned} \begin{aligned} \int _{B_{i} \backslash B_{i+1}} W_i^{2^*-2} W_j d_g(x,\cdot )^{2-n} \mathrm{d}v_g&\lesssim \mu _i^{-2} \mu _j^{\frac{n-2}{2}} \theta _j(x)^{4-n} \int _{{\mathbb {R}}^n \backslash B_0 \left( \frac{\sqrt{\mu _{i+1}\mu _i}}{\theta _j(x)} \right) } |z|^{4-2n} \mathrm{d}z \\&\lesssim \mu _i^{-2} \mu _j^{\frac{n-2}{2}} \theta _j(x)^{4-n}\left( \frac{\theta _j(x)}{\sqrt{\mu _{i+1}\mu _i}}\right) ^{n-4} \\&\lesssim \left( \frac{\mu _j}{\mu _{i+1}} \right) ^{\frac{n-2}{2}} \frac{\mu _{i+1}}{\mu _i} \mu _i^{1 - \frac{n}{2}}. \end{aligned} \end{aligned}$$

Assume now that \(x \in B_i \backslash B_{i+1}\). The change of variables

$$\begin{aligned} y = \exp _{\xi _j}^{g_{\xi _j}}(\mu _i z) \end{aligned}$$

gives

$$\begin{aligned} \begin{aligned}&\int _{B_{i} \backslash B_{i+1}} W_i^{2^*-2} W_j d_g(x,\cdot )^{2-n} \mathrm{d}v_g \\&\quad \lesssim \mu _j^{\frac{n-2}{2}} \mu _i^{2-n} \int _{{\mathbb {R}}^n \backslash B_0 \big (\frac{1}{2} \sqrt{\frac{\mu _{i+1}}{\mu _i}}\big )} (1 + |{\check{\xi }}-y|)^{-4} |y|^{2-n} |{\check{x}}-y|^{2-n} \mathrm{d}y, \end{aligned} \end{aligned}$$
(A.3)

where we have let \({\check{\xi }} = \frac{1}{\mu _i} (\exp _{\xi _j}^{g_{\xi _j}})^{-1}(\xi _i)\) and \({\check{x}} = \frac{1}{\mu _i} (\exp _{\xi _j}^{g_{\xi _j}})^{-1}(x)\). Since \(x \not \in B_{i+1}\) we have \(\theta _j(x) > rsim \sqrt{\mu _{i+1} \mu _i}\) and thus \(|{\check{x}}| > rsim \frac{\theta _j(x)}{\mu _i}\). Assume first that \(|{\check{x}}| > rsim 1\). Then we also have \(\theta _j(x) > rsim \theta _i(x)\), so that classical integral comparison results yield

$$\begin{aligned} \int _{B_{i} \backslash B_{i+1}} W_i^{2^*-2} W_j d_g(x,\cdot )^{2-n} \mathrm{d}v_g \lesssim \mu _j^{\frac{n-2}{2}} \mu _i^{2-n} (1 + |{\check{x}}|)^{2-n} \lesssim \left( \frac{\mu _j}{\mu _i} \right) ^{\frac{n-2}{2}} W_i(x) . \end{aligned}$$

Assume finally that \(|{\check{x}}| \lesssim 1\). A standard Giraud-type argument (see e.g. Lemma 7.5 in Hebey [14]) yields with (A.3)

$$\begin{aligned} \begin{aligned} \int _{B_{i} \backslash B_{i+1}} W_i^{2^*-2} W_j d_g(x,\cdot )^{2-n} \mathrm{d}v_g&\lesssim \mu _j^{\frac{n-2}{2}} \mu _i^{2-n} |{\check{x}}|^{4-n} \\&\lesssim \frac{\theta _j(x)^2}{\mu _{i}^2} W_j(x), \end{aligned} \end{aligned}$$

which concludes the proof of (A.2). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premoselli, B. Towers of Bubbles for Yamabe-Type Equations and for the Brézis–Nirenberg Problem in Dimensions \(n \ge 7\). J Geom Anal 32, 73 (2022). https://doi.org/10.1007/s12220-021-00836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00836-5

Navigation