×

Multispike solutions for the Brezis-Nirenberg problem in dimension three. (English) Zbl 1394.35145

In this article, the Brezis-Nirenberg problem given by \(\Delta u+\lambda u+u^5=0\) satisfying \(u>0\) in \(\Omega\) with \(u=0\) on the boundary of \(\Omega\) is considered. Here, \(\Omega\) is a smooth and bounded domain in \(\mathbb{R}^3\). The authors establish solutions to this problem which exhibit bubbling behavior at \(n\) different points situated in the domain as \(\lambda\) approaches a special value \(\lambda_0\). The solutions are characterized in terms of the Green function of \(-\Delta-\lambda\).

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] Yadava, Adimurthi S. L., An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem, Arch. Ration. Mech. Anal., 127, 219-229 (1994) · Zbl 0806.35031
[2] Bahri, A.; Li, Y.; Rey, O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations, 3, 67-93 (1995) · Zbl 0814.35032
[3] Ben Ayed, M.; El Mehdi, K.; Pacella, F., Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 4, 567-589 (2006) · Zbl 1157.35357
[4] Brezis, H., Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Math., 39, 17-39 (1986) · Zbl 0601.35043
[5] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[6] Druet, O., Elliptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19, 125-142 (2002) · Zbl 1011.35060
[7] del Pino, M.; Dolbeault, J.; Musso, M., The Brezis-Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl., 12, 1405-1456 (2006) · Zbl 1130.35040
[8] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) · Zbl 0425.35020
[9] Grossi, M.; Vujadinović, D., On the Green function of the annulus, Anal. Theory Appl., 32, 52-64 (2016) · Zbl 1363.35093
[10] Han, Z.-C., Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8, 2, 159-174 (1991) · Zbl 0729.35014
[11] Iacopetti, A., Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem, Ann. Mat. Pura Appl. (4), 194, 1649-1682 (2015) · Zbl 1330.35186
[12] Iacopetti, A.; Vaira, G., Sign-changing tower of bubbles for the Brezis-Nirenberg problem, Commun. Contemp. Math., 18, Article 1550036 pp. (2016), 53 pp · Zbl 1336.35170
[13] Kazdan, J. L.; Warner, F. W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28, 567-597 (1975) · Zbl 0325.35038
[14] Musso, M.; Pistoia, A., Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana Univ. Math. J., 51, 541-579 (2002) · Zbl 1074.35037
[15] Musso, M.; Pistoia, A., Double blow-up solutions for a Brezis-Nirenberg type problem, Commun. Contemp. Math., 5, 775-802 (2003) · Zbl 1048.35025
[16] Pohozaev, S. I., On the eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\), Sov. Math., Dokl., 6, 1408-1411 (1965) · Zbl 0141.30202
[17] Rey, O., The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89, 1-52 (1990) · Zbl 0786.35059
[18] Rey, O., Proof of two conjectures of H. Brézis and L. A. Peletier, Manuscripta Math., 65, 19-37 (1989) · Zbl 0708.35032
[19] Wang, Z. Q.; Willem Michel, M., Existence of many positive solutions of semilinear elliptic equations on an annulus, Proc. Amer. Math. Soc., 127, 1711-1714 (1999) · Zbl 0911.35051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.