×

Lipschitz constants for a hyperbolic type metric under Möbius transformations. (English) Zbl 07893393

Summary: Let \(D\) be a nonempty open set in a metric space \((X,d)\) with \(\partial D\neq\emptyset\). Define \[h_{D,c}(x,y)=\log\bigg (1+c\frac{d(x,y)}{\sqrt{d_D(x)d_D(y)}}\bigg),\] where \(d_D(x)=d(x,\partial D)\) is the distance from \(x\) to the boundary of \(D\). For every \(c\geq 2\), \(h_{D,c}\) is a metric. We study the sharp Lipschitz constants for the metric \(h_{D,c}\) under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

MSC:

51M10 Hyperbolic and elliptic geometries (general) and generalizations
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

References:

[1] Ahlfors, L. V., Conformal Invariants: Topics in Geometric Function Theory, AMS Chelsea Publishing, Providence (2010) · doi:10.1090/chel/371
[2] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Chichester (1997) · Zbl 0885.30012
[3] Beardon, A. F., The Geometry of Discrete Groups, Graduate Texts in Mathematics 91. Springer, New York (1983) · Zbl 0528.30001 · doi:10.1007/978-1-4612-1146-4
[4] Beardon, A. F.; Minda, D., The hyperbolic metric and geometric function theory, Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications Narosa Publishing House, New Delhi (2007), 9-56 · Zbl 1208.30001
[5] Chen, J.; Hariri, P.; Klén, R.; Vuorinen, M., Lipschitz conditions, triangular ratio metric, and quasiconformal mappings, Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709 · Zbl 1374.30069 · doi:10.5186/aasfm.2015.4039
[6] Dovgoshey, O.; Hariri, P.; Vuorinen, M., Comparison theorems for hyperbolic type metrics, Complex Var. Elliptic Equ. 61 (2016), 1464-1480 · Zbl 1354.54026 · doi:10.1080/17476933.2016.1182517
[7] Gehring, F. W.; Hag, K., The Apollonian metric and quasiconformal mappings, Proceedings of the First Ahlfors-Bers Colloquium, State University of New York, Stony Brook, NY, USA, November 6-8, 1998 Contemporary Mathematics 256. AMS, Providence (2000), (143-163) · Zbl 0964.30024 · doi:10.1090/conm/256
[8] Gehring, F. W.; Hag, K., The Ubiquitous Quasidisk, Mathematical Surveys and Monographs 184. AMS, Providence (2012) · Zbl 1267.30003 · doi:10.1090/surv/184
[9] Gehring, F. W.; Osgood, B. G., Uniform domains and the quasi-hyperbolic metric, J. Anal. Math. 36 (1979), 50-74 · Zbl 0449.30012 · doi:10.1007/BF02798768
[10] Gehring, F. W.; Palka, B. P., Quasiconformally homogeneous domains, J. Anal. Math. 30 (1976), 172-199 · Zbl 0349.30019 · doi:10.1007/BF02786713
[11] Hariri, P.; Klén, R.; Vuorinen, M., Conformally Invariant Metrics and Quasiconformal Mappings, Springer Monographs in Mathematics. Springer, Cham (2020) · Zbl 1450.30003 · doi:10.1007/978-3-030-32068-3
[12] Hariri, P.; Vuorinen, M.; Wang, G., Some remarks on the visual angle metric, Comput. Methods Funct. Theory 16 (2016), 187-201 · Zbl 1355.30019 · doi:10.1007/s40315-015-0137-8
[13] Hariri, P.; Vuorinen, M.; Zhang, X., Inequalities and bi-Lipschitz conditions for the triangular ratio metric, Rocky Mt. J. Math. 47 (2017), 1121-1148 · Zbl 1376.30019 · doi:10.1216/RMJ-2017-47-4-1121
[14] Hästö, P. A., A new weighted metric: The relative metric. I, J. Math. Anal. Appl. 274 (2002), 38-58 · Zbl 1019.54011 · doi:10.1016/S0022-247X(02)00219-6
[15] Ibragimov, Z.; Mohapatra, M. R.; Sahoo, S. K.; Zhang, X., Geometry of the Cassinian metric and its inner metric, Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 361-372 · Zbl 1366.30007 · doi:10.1007/s40840-015-0246-6
[16] Jia, G.; Wang, G.; Zhang, X., Geometric properties of the triangular ratio metric and related metrics, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4223-4237 · Zbl 1476.30149 · doi:10.1007/s40840-021-01163-2
[17] Klén, R.; Lindén, H.; Vuorinen, M.; Wang, G., The visual angle metric and Möbius transformations, Comput. Methods Funct. Theory 14 (2014), 577-608 · Zbl 1307.30082 · doi:10.1007/s40315-014-0075-x
[18] Klén, R.; Mohapatra, M. R.; Sahoo, S. K., Geometric properties of the Cassinian metric, Math. Nachr. 290 (2017), 1531-1543 · Zbl 1392.30005 · doi:10.1002/mana.201600117
[19] Mocanu, M., Functional inequalities for metric-preserving functions with respect to intrinsic metrics of hyperbolic type, Symmetry 13 (2021), Article ID 2072, 21 pages · doi:10.3390/sym13112072
[20] Mohapatra, M. R.; Sahoo, S. K., A Gromov hyperbolic metric vs the hyperbolic and other related metrics, Comput. Methods Funct. Theory 18 (2018), 473-493 · Zbl 1402.30039 · doi:10.1007/s40315-018-0233-7
[21] Nikolov, N.; Andreev, L., Estimates of the Kobayashi and quasi-hyperbolic distances, Ann. Mat. Pura Appl. (4) 196 (2017), 43-50 · Zbl 1366.32006 · doi:10.1007/s10231-016-0561-z
[22] Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149. Springer, New York (2006) · Zbl 1106.51009 · doi:10.1007/978-0-387-47322-2
[23] Simić, S.; Vuorinen, M.; Wang, G., Sharp Lipschitz constants for the distance ratio metric, Math. Scand. 116 (2015), 86-103 · Zbl 1311.30004 · doi:10.7146/math.scand.a-20452
[24] Vuorinen, M., Conformal Geometry and Quasiregular Mappings, Lecture Notes in Mathematics 1319. Springer, Berlin (1988) · Zbl 0646.30025 · doi:10.1007/BFb0077904
[25] Wang, G.; Xu, X.; Vuorinen, M., Remarks on the scale-invariant Cassinian metric, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1559-1577 · Zbl 1462.30085 · doi:10.1007/s40840-020-01011-9
[26] Xu, X.; Wang, G.; Zhang, X., Comparison and Möbius quasi-invariance properties of Ibragimov’s metric, Comput. Methods Funct. Theory 22 (2022), 609-627 · Zbl 1502.30130 · doi:10.1007/s40315-021-00414-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.