×

Some remarks on the visual angle metric. (English) Zbl 1355.30019

The local behavior of quasiconformal mappings in terms of different metrics in Euclidean space is studied. The so-called hyperbolic metric and distance ratio metric are introduced. The relationship between the two metrics mentioned above is obtained. In the case of the half-space and the ball, the extremal points for the visual angle metric are found. Uniform continuity of quasiconformal maps with respect to the triangular ratio metric and the visual angle metric is obtained.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

References:

[1] Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) · Zbl 0885.30012
[2] Beardon, A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91. Springer, New York (1983) · Zbl 0528.30001
[3] Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal maps. Ann. Acad. Sci. Fenn. 31 pp (2015, to appear). arXiv:1403.6582 [math.CA] · Zbl 1374.30069
[4] Ferrand, J., Martin, G., Vuorinen, M.: Lipschitz conditions in conformally invariant metrics. J. Anal. Math. 56, 187-210 (1991) · Zbl 0758.30018 · doi:10.1007/BF02820464
[5] Gehring, F.W., Palka, B.P.: Quasiconformally homogeneous domains. J. Anal. Math. 30, 172-199 (1976) · Zbl 0349.30019 · doi:10.1007/BF02786713
[6] Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bilipschitz conditions for triangular ratio metric 14 pp. arXiv:1411.2747 [math.MG] · Zbl 1376.30019
[7] Hästö, P.: A new weighted metric, the relative metric I. J. Math. Anal. Appl. 274, 38-58 (2002) · Zbl 1019.54011 · doi:10.1016/S0022-247X(02)00219-6
[8] Hästö, P., Ibragimov, Z., Minda, D., Ponnusamy, S., Sahoo, S.K.: Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis. In: The tradition of Ahlfors-Bers, IV. Contemporary Mathematics, vol. 432, pp. 63-74. American Mathematical Society, Providence (2007) · Zbl 1147.30029
[9] Hokuni, S., Klén, R., Li, Y., Vuorinen, M.: Balls in the triangular ratio metric. In: Proceedings of the International Conference on Complex Analysis and Dynamical Systems VI. Contemporary Mathematics. American Mathematical Society, Providence. arXiv:1212.2331 [math.MG] · Zbl 1362.30031
[10] Keen, L., Lakic, N.: Hyperbolic Geometry from a Local Viewpoint. London Mathematical Society Student Texts, vol. 68. Cambridge University Press, Cambridge (2007) · Zbl 1190.30001
[11] Klén, R., Lindén, H., Vuorinen, M., Wang, G.: The visual angle metric and Möbius transformations. Comput. Methods Funct. Theory 14, 577-608 (2014). doi:10.1007/s40315-014-0075-x · Zbl 1307.30082 · doi:10.1007/s40315-014-0075-x
[12] Martio, O., Väisälä, J.: Quasihyperbolic geodesics in convex domains II. Pure Appl. Math. Q. 7, 395-409 (2011) · Zbl 1246.30041 · doi:10.4310/PAMQ.2011.v7.n2.a7
[13] Rasila, A., Talponen, J.: Convexity properties of quasihyperbolic balls on Banach spaces. Ann. Acad. Sci. Fenn. Math. 37, 215-228 (2012) · Zbl 1316.30023 · doi:10.5186/aasfm.2012.3719
[14] Väisälä, J.: The free quasiworld. Freely quasiconformal and related maps in Banach spaces. In: Quasiconformal Geometry and Dynamics (Lublin, 1996). Banach Center Publications, vol. 48, pp. 55-118. Polish Academy of Sciences, Warsaw (1999) · Zbl 0934.30018
[15] Vuorinen, M.: Conformal invariants and quasiregular mappings. J. Anal. Math. 45, 69-115 (1985) · Zbl 0601.30025 · doi:10.1007/BF02792546
[16] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin (1988) · Zbl 0646.30025
[17] Vuorinen, M.: Geometry of metrics. J. Anal. 18, 399-424 (2010) · Zbl 1236.30022
[18] Vuorinen, M., Wang, G.: Bisection of geodesic segments in hyperbolic geometry. In: Complex Analysis and Dynamical Systems V. Contemporary Mathematics, vol. 591, pp. 273-290. American Mathematical Society, Providence (2013) · Zbl 1320.51018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.