×

Comparison and Möbius quasi-invariance properties of Ibragimov’s metric. (English) Zbl 1502.30130

Summary: For a domain \(D \subsetneq{\mathbb{R}}^n \), Ibragimov’s metric is defined as \[ u_D(x,y) = 2\, \log \frac{|x-y|+\max \{d(x),d(y)\}}{\sqrt{d(x)\,d(y)}}, \quad x,y \in D, \] where \(d(x)\) denotes the Euclidean distance from \(x\) to the boundary of \(D\). In this paper, we compare Ibragimov’s metric with the classical hyperbolic metric in the unit ball or in the upper half space, and prove sharp comparison inequalities between Ibragimov’s metric and some hyperbolic type metrics. We also obtain several sharp distortion inequalities for Ibragimov’s metric under some families of Möbius transformations.

MSC:

30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)
51M10 Hyperbolic and elliptic geometries (general) and generalizations
Full Text: DOI

References:

[1] Anderson, GD; Vamanamurthy, MK; Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps (1997), New York: Wiley, New York · Zbl 0885.30012
[2] Beardon, AF, The Geometry of Discrete Groups. Graduate Texts in Mathematics (1983), New York: Springer, New York · Zbl 0528.30001 · doi:10.1007/978-1-4612-1146-4
[3] Beardon, A.F.: The Apollonian metric of a domain in \({\mathbb{R}}^n \). Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), 91-108. Springer, New York (1998) · Zbl 0890.30030
[4] Chen, J.; Hariri, P.; Klén, R.; Vuorinen, M., Lipschitz conditions, triangular ratio metric, and quasiconformal mappings, Ann. Acad. Sci. Fenn. Math., 40, 683-709 (2015) · Zbl 1374.30069 · doi:10.5186/aasfm.2015.4039
[5] Gehring, FW; Palka, BP, Quasiconformally homogeneous domains, J. Anal. Math., 30, 172-199 (1976) · Zbl 0349.30019 · doi:10.1007/BF02786713
[6] Gehring, FW; Osgood, BG, Uniform domains and the quasihyperbolic metric, J. Anal. Math., 36, 50-74 (1979) · Zbl 0449.30012 · doi:10.1007/BF02798768
[7] Hariri, P.; Vuorinen, M.; Zhang, X., Inequalities and bi-Lipschitz conditions for the triangular ratio metric, Rocky Mt. J. Math., 47, 1121-1148 (2017) · Zbl 1376.30019 · doi:10.1216/RMJ-2017-47-4-1121
[8] Hästö, P.; Lindén, H., Isometries of the half-Apollonian metric, Complex Var. Theory Appl., 49, 405-415 (2004) · Zbl 1063.30042
[9] Hästö, P., Gromov hyperbolicity of the \(j_G\) and \(\tilde{j}_G\) metrics, Proc. Am. Math. Soc., 134, 1137-1142 (2006) · Zbl 1089.30044 · doi:10.1090/S0002-9939-05-08053-6
[10] Ibragimov, Z.: The Cassinian metric of a domain in \(\overline{{\mathbb{R}}}^n\). Uzbek. Mat. Zh., 53-67 (2009)
[11] Ibragimov, Z., Hyperbolizing metric spaces, Proc. Am. Math. Soc., 139, 4401-4407 (2011) · Zbl 1244.30066 · doi:10.1090/S0002-9939-2011-10857-8
[12] Ibragimov, Z., Möbius invariant Cassinian metric, Bull. Malays. Math. Sci. Soc., 42, 1349-1367 (2019) · Zbl 1434.30010 · doi:10.1007/s40840-017-0550-4
[13] Ibragimov, Z.; Mohapatra, MR; Sahoo, SK; Zhang, X., Geometry of the Cassinian metric and its inner metric, Bull. Malays. Math. Sci. Soc., 40, 361-372 (2017) · Zbl 1366.30007 · doi:10.1007/s40840-015-0246-6
[14] Klén, R.; Lindén, H.; Vuorinen, M.; Wang, G., The visual angle metric and Möbius transformations, Comput. Methods Funct. Theory, 14, 577-608 (2014) · Zbl 1307.30082 · doi:10.1007/s40315-014-0075-x
[15] Mohapatra, MR; Sahoo, SK, A Gromov hyperbolic metric vs the hyperbolic and other related metrics, Comput. Methods Funct. Theory, 18, 473-493 (2018) · Zbl 1402.30039 · doi:10.1007/s40315-018-0233-7
[16] Mohapatra, MR; Sahoo, SK, Mapping properties of a scale invariant Cassinian metric and a Gromov hyperbolic metric, Bull. Aust. Math. Soc., 97, 141-152 (2018) · Zbl 1381.51015 · doi:10.1017/S0004972717000570
[17] Seittenranta, P., Möbius-invariant metrics, Math. Proc. Camb. Philos. Soc., 125, 511-533 (1999) · Zbl 0917.30015 · doi:10.1017/S0305004198002904
[18] Simić, S.; Vuorinen, M.; Wang, G., Sharp Lipschitz constants for the distance ratio metric, Math. Scand., 116, 86-103 (2015) · Zbl 1311.30004 · doi:10.7146/math.scand.a-20452
[19] Vuorinen, M.: Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin (1988) · Zbl 0646.30025
[20] Wang, G.; Vuorinen, M., The visual angle metric and quasiregular maps, Proc. Am. Math. Soc., 144, 4899-4912 (2016) · Zbl 1355.30020 · doi:10.1090/proc/13188
[21] Xu, X.; Wang, G., Sharp inequalities for the scale invariant Cassinian metric, J. Zhejiang Sci. Tech. Univ., 41, 829-834 (2019)
[22] Zhang, X., Comparison between a Gromov hyperbolic metric and the hyperbolic metric, Comput. Methods Funct. Theory, 18, 717-722 (2018) · Zbl 1404.30048 · doi:10.1007/s40315-018-0247-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.