×

A new weighted metric: the relative metric. I. (English) Zbl 1019.54011

Let \({\mathbb{X}}\) be a normed space and \(M:{\mathbb{R}}^+\times{\mathbb{R}}^+\to{\mathbb{R}}^+\) be a symmetric function satisfying \(M(|x|,|y|)>0\) if \(|x||y|>0\) for \(x,y\in{\mathbb{X}}\). A function \(\rho_M\) is called an \(M\)-relative distance if it has the form \(\rho_M(x,y)=\frac{|x-y|}{M(|x|,|y|)}\). In this paper, the author obtains necessary and sufficient conditions under which \(\rho_M\) is a metric in two special cases.
The first case is when \(M\) equals a power of the power mean, \(M=A_p^q\). In this case \(\rho_M\) is denoted by \(\rho_{p,q}\). He proves that if \(q\not=0\), then the \((p,q)\)-relative distance \(\rho_{p,q}(x,y)=\frac{|x-y|}{A_p(|x|,|y|)^q}\) is a metric in \({\mathbb{R}}^n\) if and only if \(0<q\leq 1\) and \(p\geq\max\{1-q,(2-q)/3\}\).
The second case is when \(M(x,y)=f(x)f(y)\), where \(f:{\mathbb{R}}^n\to(0,\infty)\). He shows that \(\rho_M\) is a metric in \({\mathbb{R}}^n\) if and only if (i) \(f\) is increasing, (ii) \(f(x)/x\) is decreasing for \(x>0\) and (iii) \(f\) is convex.

MSC:

54C35 Function spaces in general topology
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
39B62 Functional inequalities, including subadditivity, convexity, etc.
26D07 Inequalities involving other types of functions
30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)

References:

[1] Alzer, H., Mean-value inequalities for the polygamma functions, Aequationes Math., 61, 1-2, 151-161 (2001) · Zbl 0968.33003
[2] Amir, D., Characterizations of Inner Product Spaces. Characterizations of Inner Product Spaces, Oper. Theory Adv. Appl., 20 (1986), Birkhäuser: Birkhäuser Basel · Zbl 0617.46030
[3] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps (1997), Wiley: Wiley New York · Zbl 0767.30018
[4] Barrlund, A., The \(p\)-relative distance is a metric, SIAM J. Matrix Anal. Appl., 21, 2, 699-702 (1999), (electronic) · Zbl 0944.15020
[5] Berger, M., Geometry 1 (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0606.51001
[6] Bullen, P. S., A Dictionary of Inequalities. A Dictionary of Inequalities, Pitman Monogr. Surveys Pure Appl. Math., 97 (1998), Longman · Zbl 0934.26003
[7] D. Day, A new metric in the complex numbers, Sandia Technical Report 98-1754, Sandia National Laboratories, Albuquerque, NM, 1998; D. Day, A new metric in the complex numbers, Sandia Technical Report 98-1754, Sandia National Laboratories, Albuquerque, NM, 1998
[8] P.A. Hästö, A new weighted metric: the relative metric II, http://arxiv.org/math.MG/0108026; P.A. Hästö, A new weighted metric: the relative metric II, http://arxiv.org/math.MG/0108026
[9] Kay, D. C., The Ptolemaic inequality in Hilbert geometries, Pacific J. Math., 21, 293-301 (1967) · Zbl 0147.22406
[10] Li, R.-C., Relative perturbation theory. I. Eigenvalue and singular value variations, SIAM J. Matrix Anal. Appl., 19, 4, 956-982 (1998), (electronic) · Zbl 0917.15009
[11] Lin, T.-P., The power mean and the logarithmic mean, Amer. Math. Monthly, 81, 879-883 (1974) · Zbl 0292.26015
[12] Seittenranta, P., Möbius-invariant metrics, Math. Proc. Cambridge Philos. Soc., 125, 511-533 (1999) · Zbl 0917.30015
[13] Stolarsky, K. B., Generalizations of the logarithmic mean, Math. Mag., 48, 87-92 (1975) · Zbl 0302.26003
[14] Vamanamurthy, M. K.; Vuorinen, M., Inequalities for means, J. Math. Anal. Appl., 183, 155-166 (1994) · Zbl 0802.26009
[15] Vuorinen, M., Conformal Geometry and Quasiregular Mappings. Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., 1319 (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0646.30025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.