×

Endoscopy on \(\mathrm{SL}_2\)-eigenvarieties. (English) Zbl 07891383

Summary: In this paper, we study \(\mathrm{p} \)-adic endoscopy on eigenvarieties for \(\mathrm{SL}_2\) over totally real fields, taking a geometric perspective. We show that non-automorphic members of endoscopic \(\mathrm{L} \)-packets of regular weight contribute eigenvectors to overconvergent cohomology at critically refined endoscopic points on the eigenvariety, and we precisely quantify this contribution. This gives a new perspective on and generalizes previous work of the second author. Our methods are geometric, and are based on showing that the \(\mathrm{SL}_2\)-eigenvariety is locally a quotient of an eigenvariety for \(\mathrm{GL}_2\), which allows us to explicitly describe the local geometry of the \(\mathrm{SL}_2\)-eigenvariety. In particular, we show that it often fails to be Gorenstein.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F80 Galois representations
11F33 Congruences for modular and \(p\)-adic modular forms
11F85 \(p\)-adic theory, local fields
22E50 Representations of Lie and linear algebraic groups over local fields

Software:

LMFDB

References:

[1] P. B. Allen, On automorphic points in polarized deformation rings, Amer. J. Math. 141 (2019), no. 1, 119-167. · Zbl 1473.11113
[2] E. Artin and J. Tate, Class field theory, W. A. Benjamin, New York 1968. · Zbl 0176.33504
[3] A. Ash and G. Stevens, 𝑝-adic deformations of arithmetic cohomology, preprint (2007).
[4] J. Bellaïche, Nonsmooth classical points on eigenvarieties, Duke Math. J. 145 (2008), no. 1, 71-90. · Zbl 1206.11057
[5] J. Bellaïche, Critical 𝑝-adic 𝐿-functions, Invent. Math. 189 (2012), no. 1, 1-60. · Zbl 1318.11067
[6] J. Bellaïche, Unitary eigenvarieties at isobaric points, Canad. J. Math. 67 (2015), no. 2, 315-329. · Zbl 1396.11129
[7] J. Bellaïche, The eigenbook. Eigenvarieties, families of Galois representations, 𝑝-adic 𝐿-functions, Birkhäuser, Cham 2021. · Zbl 1493.11002
[8] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324, Société Mathématique de France, Paris 2009. · Zbl 1192.11035
[9] J. Bergdall, Paraboline variation over 𝑝-adic families of (\phi,\Gamma)-modules, Compos. Math. 153 (2017), no. 1, 132-174. · Zbl 1427.11047
[10] J. Bergdall, Upper bounds for constant slope 𝑝-adic families of modular forms, Selecta Math. (N. S.) 25 (2019), no. 4, Paper No. 59. · Zbl 1460.11058
[11] J. Bergdall, Smoothness of definite unitary eigenvarieties at critical points, J. reine angew. Math. 759 (2020), 29-60. · Zbl 1469.11085
[12] J. Bergdall and D. Hansen, On 𝑝-adic L-functions for Hilbert modular forms, preprint (2017), https://arxiv.org/abs/1710.05324.
[13] L. Berger, Équations différentielles 𝑝-adiques et (\phi,N)-modules filtrés, Représentations 𝑝-adiques de groupes 𝑝-adiques. I. Représentations galoisiennes et (\phi,\Gamma)-modules, Astérisque 319, Société Mathématique de France, Paris (2008), 13-38. · Zbl 1168.11019
[14] G. Böckle, M. Harris, C. Khare and J. A. Thorne, \hat{G}-local systems on smooth projective curves are potentially automorphic, Acta Math. 223 (2019), no. 1, 1-111. · Zbl 1437.11078
[15] S. Bosch, Lectures on formal and rigid geometry, Lecture Notes in Math. 2105, Springer, Cham 2014. · Zbl 1314.14002
[16] C. Breuil, E. Hellmann and B. Schraen, Smoothness and classicality on eigenvarieties, Invent. Math. 209 (2017), no. 1, 197-274. · Zbl 1410.11042
[17] C. Breuil, E. Hellmann and B. Schraen, A local model for the trianguline variety and applications, Publ. Math. Inst. Hautes Études Sci. 130 (2019), 299-412. · Zbl 1454.14120
[18] A. Caraiani and M. Tamiozzo, On the étale cohomology of Hilbert modular varieties with torsion coefficients, Compos. Math. 159 (2023), no. 11, 2279-2325. · Zbl 1537.14041
[19] G. Chenevier, Une correspondance de Jacquet-Langlands 𝑝-adique, Duke Math. J. 126 (2005), no. 1, 161-194. · Zbl 1070.11016
[20] G. Chenevier, The 𝑝-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser. 414, Cambridge Universty, Cambridge (2014), 221-285. · Zbl 1350.11063
[21] C. Chevalley, Deux théorèmes d’arithmétique, J. Math. Soc. Japan 3 (1951), 36-44. · Zbl 0044.03001
[22] R. F. Coleman and B. Edixhoven, On the semi-simplicity of the U_p-operator on modular forms, Math. Ann. 310 (1998), no. 1, 119-127. · Zbl 0902.11020
[23] D. Eisenbud, Commutative algebra, Grad. Texts in Math. 150, Springer, New York 1995. · Zbl 0819.13001
[24] K. Emerson, Comparison of different definitions of pseudocharacter, PhD thesis, Princeton University, 2018.
[25] M. Emerton, T. Gee and E. Hellmann, An introduction to the categorical 𝑝-adic Langlands program, preprint (2023), https://arxiv.org/abs/2210.01404v2.
[26] M. Emerton and D. Helm, The local Langlands correspondence for GL_n in families, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 655-722. · Zbl 1321.11055
[27] L. Fargues and P. Scholze, Geometrization of the local Langlands correspondence, preprint (2024), https://arxiv.org/abs/2102.13459v3.
[28] W. Fu, A derived construction of eigenvarieties, preprint (2022), https://arxiv.org/abs/2110.04797v2.
[29] T. Gee, Modularity lifting theorems, Essent. Number Theory 1 (2022), no. 1, 73-126. · Zbl 1524.11215
[30] S. S. Gelbart and A. W. Knapp, 𝐿-indistinguishability and 𝑅 groups for the special linear group, Adv. Math. 43 (1982), no. 2, 101-121. · Zbl 0493.22005
[31] D. Hansen, Universal eigenvarieties, trianguline Galois representations, and 𝑝-adic Langlands functoriality, J. reine angew. Math. 730 (2017), 1-64. · Zbl 1425.11117
[32] G. Harder, Eisenstein cohomology of arithmetic groups. The case GL_2, Invent. Math. 89 (1987), no. 1, 37-118. · Zbl 0629.10023
[33] E. Hellmann, On the derived category of the Iwahori-Hecke algebra, Compos. Math. 159 (2023), no. 5, 1042-1110. · Zbl 1525.11052
[34] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Math. E30, Friedrich Vieweg, Braunschweig 1996. · Zbl 0868.14010
[35] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin 1970. · Zbl 0236.12010
[36] C. Johansson and J. Newton, Extended eigenvarieties for overconvergent cohomology, Algebra Number Theory 13 (2019), no. 1, 93-158. · Zbl 1444.11078
[37] C. Johansson and J. Newton, Irreducible components of extended eigenvarieties and interpolating Langlands functoriality, Math. Res. Lett. 26 (2019), no. 1, 159-201. · Zbl 1446.11077
[38] K. S. Kedlaya, J. Pottharst and L. Xiao, Cohomology of arithmetic families of (\varphi,\Gamma)-modules, J. Amer. Math. Soc. 27 (2014), no. 4, 1043-1115. · Zbl 1314.11028
[39] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture. II, Invent. Math. 178 (2009), no. 3, 505-586. · Zbl 1304.11042
[40] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math. 153 (2003), no. 2, 373-454. · Zbl 1045.11029
[41] M. Kisin, Geometric deformations of modular Galois representations, Invent. Math. 157 (2004), no. 2, 275-328. · Zbl 1150.11020
[42] J.-P. Labesse and R. P. Langlands, 𝐿-indistinguishability for SL(2), Canad. J. Math. 31 (1979), no. 4, 726-785. · Zbl 0421.12014
[43] V. Lafforgue, Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale, J. Amer. Math. Soc. 31 (2018), no. 3, 719-891. · Zbl 1395.14017
[44] V. Lafforgue and X. Zhu, Décomposition au-dessus des paramètres de Langlands elliptiques, preprint (2019), https://arxiv.org/abs/1811.07976v2.
[45] J. M. Lansky and A. Raghuram, Conductors and newforms for SL(2), Pacific J. Math. 231 (2007), no. 1, 127-153. · Zbl 1154.22021
[46] D. Loeffler, Overconvergent algebraic automorphic forms, Proc. Lond. Math. Soc. (3) 102 (2011), no. 2, 193-228. · Zbl 1232.11056
[47] J. Ludwig, 𝐿-indistinguishability on eigenvarieties, J. Inst. Math. Jussieu 17 (2018), no. 2, 425-440. · Zbl 1471.11183
[48] J. Ludwig, On endoscopic 𝑝-adic automorphic forms for SL_2, Doc. Math. 23 (2018), 383-406. · Zbl 1441.11137
[49] D. Luna, Slices étales, Sur les groupes algébriques, Société Mathématique de France, Paris (1973), 81-105. · Zbl 0286.14014
[50] J. Newton and J. A. Thorne, Adjoint Selmer groups of automorphic Galois representations of unitary type, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 5, 1919-1967. · Zbl 1536.11082
[51] J. Pottharst, Analytic families of finite-slope Selmer groups, Algebra Number Theory 7 (2013), no. 7, 1571-1612. · Zbl 1370.11123
[52] C. Procesi, The invariant theory of n\times n matrices, Adv. Math. 19 (1976), no. 3, 306-381. · Zbl 0331.15021
[53] D. Ramakrishnan, Modularity of the Rankin-Selberg 𝐿-series, and multiplicity one for SL(2), Ann. of Math. (2) 152 (2000), no. 1, 45-111. · Zbl 0989.11023
[54] J. P. Saha, Conductors in 𝑝-adic families, Ramanujan J. 44 (2017), no. 2, 359-366. · Zbl 1434.11104
[55] P. Scholze and J. Weinstein, Berkeley lectures on 𝑝-adic geometry, Ann. of Math. Stud. 207, Princeton University, Princeton 2020. · Zbl 1475.14002
[56] E. Urban, Eigenvarieties for reductive groups, Ann. of Math. (2) 174 (2011), no. 3, 1685-1784. · Zbl 1285.11081
[57] M. Weidner, Pseudocharacters of homomorphisms into classical groups, Transform. Groups 25 (2020), no. 4, 1345-1370. · Zbl 1496.20079
[58] The LMFDB collaboration, The L-functions and modular forms database, https://www.lmfdb.org, 2023, [Online; accessed 14 December 2023].
[59] The Stacks project authors. The Stacks project.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.