×

A local model for the trianguline variety and applications. (English) Zbl 1454.14120

Denote by \(\mathfrak{g}\simeq \mathfrak {gl}_n^{[F_v^+:\mathbf{Q}_p]}\) (respectively, \(\mathfrak{b}\)) the \(L\)-Lie algebra of \(G:=({\text{Res}}_{F^+_v/\mathbf{Q}_p}\text{GL}_{n/F_v^+})_L\) (respectively, of the Borel subgroup \(B\) of upper triangular matrices). The authors describe the completed local rings of the trianguline variety at certain points of integral weights in terms of completed local rings of algebraic varieties related to Grothendieck’s simultaneous resolution \(\widetilde{\mathfrak{g}}\rightarrow \mathfrak{g}\) of singularities, where \(\widetilde{\mathfrak{g}}:= \{(gB,\psi)\in G/B\times \mathfrak{g}: \text{Ad}(g^{-1})\psi\in \mathfrak{b}\}\subseteq G/B\times \mathfrak{g}\).
The authors derive several local consequences at these points for the trianguline variety: local irreducibility, description of all local companion points in the crystalline case, and combinatorial description of the completed local rings of the fiber over the weight map. Taylor-Wiles assumptions are as follows: \(p>2\), the field \(F\) is unramified over \(F^+\), \(F\) does not contain a nontrivial root \(\sqrt[p]{1}\) of unity, and \(G\) is quasi-split at all finite places of \(F^+\), \(U_v\) is hyperspecial when the finite place \(v\) of \(F^+\) is inert in \(F\), and \(\overline{\rho}(\text{Gal}(\overline F/F(\sqrt[p]{1}))\) is adequate. Combined with the patched Hecke eigenvariety under the usual Taylor-Wiles assumptions, these results have global consequences, such as classicality of crystalline strictly dominant points on global Hecke eigenvarieties, existence of all expected companion constituents in the completed cohomology, and existence of singularities on global Hecke eigenvarieties.

MSC:

14M17 Homogeneous spaces and generalizations
17B05 Structure theory for Lie algebras and superalgebras
17B99 Lie algebras and Lie superalgebras
14L15 Group schemes
20G99 Linear algebraic groups and related topics

References:

[1] A. Beilinson and J. Bernstein, Localisation de g \(\mathfrak{g} \)-modules, C. R. Acad. Sci. Paris, 292 (1981), 15-18. · Zbl 0476.14019
[2] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque, 324, p. xii+314 (2009). · Zbl 1192.11035
[3] J. Bellaïche, Critical p \(p\)-adic L-functions, Invent. Math., 189 (2012), 1-60. · Zbl 1318.11067
[4] J. Bergdall, Ordinary modular forms and companion points on the eigencurve, J. Number Theory, 134 (2014), 226-239. · Zbl 1392.11029
[5] J. Bergdall, Paraboline variation over p \(p\)-adic families of (φ,Γ)\((\varphi ,\Gamma )\)-modules, Compos. Math., 153 (2017), 132-174. · Zbl 1427.11047
[6] J. Bergdall, Smoothness on definite unitary eigenvarieties at critical points, J. Reine Angew. Math. (2018). https://doi.org/10.1515/crelle-2017-0048. · Zbl 1469.11085 · doi:10.1515/crelle-2017-0048
[7] L. Berger, Représentations p \(p\)-adiques et équations différentielles, Invent. Math., 148 (2002), 219-284. · Zbl 1113.14016
[8] L. Berger, Équation différentielles p \(p\)-adiques et (φ,\(N)(\varphi ,N)\)-modules filtrés, Astérisque, 319 (2008), 13-38. · Zbl 1168.11019
[9] L. Berger, Constructions de (φ,Γ)\((\varphi,\Gamma)\)-modules: représentations p \(p\)-adiques et \({\rm B}\)-paires, Algebra Number Theory, 2 (2008), 91-120. · Zbl 1219.11078
[10] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the base affine space and a study of g \(\mathfrak{g} \)-modules, Lie groups and their representations, 243 (1975). · Zbl 0338.58019
[11] I. N. Bernstein and A. N. Zelevinsky, Induced representations of reductive p \(\mathfrak{p} \)-adic groups. I, Ann. Sci. Éc. Norm. Supér., 10 (1977), 441-472. · Zbl 0412.22015
[12] R. Bezrukavnikov and S. Riche, Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Éc. Norm. Supér., 45 (2012), 535-599. · Zbl 1293.20044
[13] S. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, vol. 182, 2000. · Zbl 0959.14032
[14] S. Bosch and W. Lütkebohmert, Formal and rigid geometry II. Flattening techniques, Math. Ann., 296 (1993), 403-429. · Zbl 0808.14018
[15] C. Breuil, Vers le socle localement analytique pour GLn \(\text{GL}_n I\), Ann. Inst. Fourier, 66 (2016), 633-685. · Zbl 1378.11098
[16] C. Breuil, Vers le socle localement analytique pour GLn \(\text{GL}_n\) II, Math. Ann., 361 (2015), 741-785. · Zbl 1378.11060
[17] C. Breuil and M. Emerton, Représentations ordinaires de GL2(Qp)\({\text{GL}}_2(\mathbf{Q}_p)\) et compatibilité local-global, Astérisque, 331 (2010), 255-315. · Zbl 1251.11043
[18] C. Breuil and A. Mézard, Multiplicités modulaires et représentations de GL2(Zp)\({\text{GL}}_2(\mathcal{Z}_p)\) et de Gal(Qp‾/Qp)\({\text{Gal}}(\overline{\mathbf{Q}_p}/\mathbf{Q}_p)\) en ℓ=p \(\ell=p\), Duke Math. J., 115 (2002), 205-298. · Zbl 1042.11030
[19] C. Breuil, E. Hellmann and B. Schraen, Une interprétation modulaire de la variété trianguline, Math. Ann., 367 (2017), 1587-1645. · Zbl 1430.11079
[20] C. Breuil, E. Hellmann and B. Schraen, Smoothness and classicality on eigenvarieties, Invent. Math., 209 (2017), 197-274. · Zbl 1410.11042
[21] J. L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 64 (1981), 387-410. · Zbl 0473.22009
[22] A. Caraiani, Monodromy and local-global compatibility for ℓ=p \(\ell= p\), Algebra Number Theory, 8 (2014), 1597-1646. · Zbl 1310.11061
[23] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paškūnas and S. W. Shin, Patching and the p \(p\)-adic local Langlands correspondence, Camb. J. Math., 4 (2016), 197-287. · Zbl 1403.11073
[24] G. Chenevier, On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér., 44 (2011), 963-1019. · Zbl 1279.11056
[25] G. Chenevier, Sur la densité des representations cristallines de Gal(Qp‾/Qp)\( \text{Gal}(\overline{\mathbf{Q}_p}/\mathbf{Q}_p)\), Math. Ann., 355 (2015), 1469-1525. · Zbl 1283.11082
[26] G. Chenevier, The p \(p\)-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Lond. Math. Soc. Lect. Note Ser., 414 (2014), 221-285. · Zbl 1350.11063
[27] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Modern, Birkhäuser Classics, 1997. · Zbl 0879.22001
[28] Y. Ding, Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global, Mémoires Soc. Math. France, vol. 155, 2017. · Zbl 1403.14001
[29] Y. Ding, Some results on the locally analytic socle for GLn(Qp)\( \text{GL}_n(\mathbf{Q}_p)\), Int. Math. Res. Not., 287 (2018).
[30] Y. Ding, Companion points and locally analytic socle for \({\rm GL}_2(L)\), Isr. J. Math., 231 (2019), 47-122. · Zbl 1442.22018
[31] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, 1995. · Zbl 0819.13001
[32] M. Emerton, Jacquet modules of locally analytic representations of p \(p\)-adic reductive groups I. Construction and first properties, Ann. Sci. Éc. Norm. Supér., 39 (2006), 775-839. · Zbl 1117.22008
[33] M. Emerton, Jacquet modules of locally analytic representations of p \(p\)-adic reductive groups II. The relation to parabolic induction, J. Inst. Math. Jussieu, to appear · Zbl 1117.22008
[34] M. Emerton, Locally Analytic Vectors in Representations of Locallyp \(p\)-Adic Analytic Groups, Memoirs Amer. Math. Soc., vol. 248, 2017. · Zbl 1430.22020
[35] M. Emerton and T. Gee, A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, 13 (2014), 183-223. · Zbl 1318.11061
[36] J.-M. Fontaine, Représentations ℓ \(\ell \)-adiques potentiellement semi-stables, Astérisque, 223 (1994), 321-347. · Zbl 0873.14020
[37] J.-M. Fontaine, Arithmétique des représentations galoisiennes p \(p\)-adiques, Astérisque, 295 (2004), 1-115. · Zbl 1142.11335
[38] T. Gee and M. Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math., Pi, 2, e1 (2014). · Zbl 1408.11033
[39] V. Ginsburg, G \(\mathfrak{G} \)-modules, Springer’s representations and bivariant Chern classes, Adv. Math., 61 (1986), 1-48. · Zbl 0601.22008
[40] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (première partie), Publ. Math. IHÉS, 20 (1964), 5-259. · Zbl 0136.15901
[41] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (seconde partie), Publ. Math. IHÉS, 24 (1965), 5-231. · Zbl 0135.39701
[42] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (troisième partie), Publ. Math. IHÉS, 28 (1966), 5-255. · Zbl 0144.19904
[43] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, 1977. · Zbl 0367.14001
[44] R. Hotta, K. Takeuchi and T. Tanisaki, D \(D\)-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics, vol. 236, 2008. · Zbl 1136.14009
[45] J. Humphreys, Representations of Semisimple Lie Algebras in the BGG CategoryO \(\mathcal{O} \), Graduate Studies in Mathematics, vol. 94, 2008. · Zbl 1177.17001
[46] J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, 2007. · Zbl 1139.22014
[47] M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J., 89 (1997), 9-36. · Zbl 0901.17006
[48] K. Kedlaya, Slope filtrations for relative Frobenius, Astérisque, 319 (2008), 259-301. · Zbl 1168.11053
[49] K. Kedlaya, J. Pottharst and L. Xiao, Cohomology of arithmetic families of (φ,Γ)\((\varphi,\Gamma)\)-modules, J. Am. Math. Soc., 27 (2014), 1043-1115. · Zbl 1314.11028
[50] R. Kiehl and R. Weissauer, Weil Conjectures, Perverse Sheaves andℓ \(\ell \)-adic Fourier Transform, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, a Series of Modern Surveys in Mathematics, vol. 42, 2001. · Zbl 0988.14009
[51] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math., 153 (2003), 373-454. · Zbl 1045.11029
[52] M. Kisin, Potentially semi-stable deformation rings, J. Am. Math. Soc., 21 (2008), 513-546. · Zbl 1205.11060
[53] M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. Math., 170 (2009), 1085-1180. · Zbl 1201.14034
[54] R. Liu, Cohomology and duality for (φ,Γ)\((\varphi,\Gamma)\)-modules over the Robba ring, Int. Math. Res. Not., 32 (2008). · Zbl 1248.11093
[55] R. Liu, Triangulation of refined families, Comment. Math. Helv., 90 (2015), 831-904. · Zbl 1376.11029
[56] K. Nakamura, Classification of two-dimensional split trianguline representations of p \(p\)-adic fields, Compos. Math., 145 (2009), 865-914. · Zbl 1225.11074
[57] K. Nakamura, Deformations of trianguline \({\rm B}\)-pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo, 20 (2013), 461-568. · Zbl 1295.11056
[58] S. Orlik and M. Strauch, On Jordan-Hölder series of some locally analytic representations, J. Am. Math. Soc., 28 (2015), 99-157. · Zbl 1307.22009
[59] M. Schlessinger, Functors of Artin rings, Trans. Am. Math. Soc., 130 (1968), 208-222. · Zbl 0167.49503
[60] T. Schmidt and M. Strauch, Dimensions of some locally analytic representations, Represent. Theory, 20 (2016), 14-38. · Zbl 1397.22016
[61] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math., vol. 815, 1980. · Zbl 0441.14002
[62] R. Steinberg, On the desingularization of the unipotent variety, Invent. Math., 36 (1976), 209-224. · Zbl 0352.20035
[63] T. Tanisaki, Characteristic varieties of highest weight modules and primitive quotients, Adv. Stud. Pure Math., 14 (1988), 1-30. · Zbl 0703.17002
[64] Tate, J., p \(p\)-divisible Groups, 158-183 (1966) · Zbl 0157.27601
[65] J. Thorne, On the automorphy of ℓ \(\ell \)-adic Galois representations with small residual image, J. Inst. Math. Jussieu, 11 (2012), 855-906. · Zbl 1269.11054
[66] J. Thorne, A 2-adic automorphy lifting theorem for unitary groups over CM fields, Math. Z., 285 (2017), 1-38. · Zbl 1427.11050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.