×

Smoothness and classicality on eigenvarieties. (English) Zbl 1410.11042

“Let \(p\) be a prime number. In this paper we are concerned with classicality of \(p\)-adic automorphic forms on some unitary groups, i.e. we are looking for criteria that decide whether a given \(p\)-adic automorphic form is classical or not. More precisely, we work with \(p\)-adic forms of finite slope, that is, in the context of eigenvarieties.”
“Let \(F^+\) be a totally real number field and \(F\) be an imaginary quadratic extension of \(F^+\). We fix a unitary group \(G\) in \(n\) variables over \(F^+\) which splits over \(F\) and over all \(p\)-adic places of \(F^+\), and which is compact at all infinite places of \(F^+\).”
One may view a \(p\)-adic overconvergent eigenform as a point \(x\) of the associated Hecke eigenvariety, and one can associate to each such \(x\) a continuous semi-simple representation \(\varphi_X: \text{Gal}(\overline F/F)\to \text{GL}_n(\overline{\mathbb{Q}}_p)\) which is unramified outside a finite set of places of \(F\) and trianguline at all places of \(F\) dividing \(p\).
One expects that any overconvergence form \(x\) of classical weight such that \(\rho_x\) is de Rham at places of \(F\) dividing \(p\) is a classical automorphic form (Conjecture 3.5).
“Such a classicality theorem is due to Kisin in the context of Carleman-Mazur’s eigencurve, i.e. in the slightly different setting \(\text{GL}_1/\mathbb{Q}\).”
“In present paper, we prove new cases of this classicality conjecture (in the above unitary setting). In particular we are able to deal with cases where the overconvergent form \(x\) is critical.”

MSC:

11F80 Galois representations
11F85 \(p\)-adic theory, local fields
11S31 Class field theory; \(p\)-adic formal groups

References:

[1] Bellaïche, J.: Nonsmooth classical points on eigenvarieties. Duke Math. J. 145, 71-90 (2008) · Zbl 1206.11057 · doi:10.1215/00127094-2008-047
[2] Bellaïche, J., Chenevier, G.: Families of Galois representations and Selmer groups. Astérisque 324, xii+314 (2009) · Zbl 1192.11035
[3] Benois, D.: A generalization of Greenberg’s \[L\] L-invariant. Am. J. Math. 133, 1573-1632 (2011) · Zbl 1307.11079 · doi:10.1353/ajm.2011.0043
[4] Bergdall, J.: Paraboline variation over \[p\] p-adic families of \[(\varphi ,\Gamma )\](φ,Γ)-modules. Composit. Math. (2016) (to appear) · Zbl 1427.11047
[5] Bergdall, J.: Smoothness on definite eigenvarieties at critical points (2015) (preprint) · Zbl 1469.11085
[6] Berger, L.: Représentations \[p\] p-adiques et équations différentielles. Invent. Math. 148, 219-284 (2002) · Zbl 1113.14016 · doi:10.1007/s002220100202
[7] Berger, L., Colmez, P.: Familles de représentations de de Rham et monodromie \[p\] p-adique. Astérisque 319, 303-337 (2008) · Zbl 1168.11020
[8] Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. 179, 501-609 (2014) · Zbl 1310.11060 · doi:10.4007/annals.2014.179.2.3
[9] Bosch, S.: Lectures on Formal and Rigid Geometry, Lecture Notes in Mathematics, vol. 2105. Springer, Berlin (2014) · Zbl 1314.14002
[10] Bourbaki, N.: Éléments de mathématique Algèbre commutative. Springer, Berlin (2006) · Zbl 1103.13002
[11] Breuil, C.: Vers le socle localement analytique pour \[{\rm GL}_n\] GLn I. Ann. Inst. Fourier 66, 633-685 (2016) · Zbl 1378.11098 · doi:10.5802/aif.3021
[12] Breuil, C.: Vers le socle localement analytique pour \[{\rm GL}_n\] GLn II. Math. Ann. 361, 741-785 (2015) · Zbl 1378.11060 · doi:10.1007/s00208-014-1086-7
[13] Breuil, C., Hellmann, E., Schraen, B.: Une interprétation modulaire de la variété trianguline. Math. Ann. (2016) (to appear) · Zbl 1430.11079
[14] Caraiani, A.: Local-global compatibility and the action of monodromy on nearby cycles. Duke Math. J. 161, 2311-2413 (2012) · Zbl 1405.22028 · doi:10.1215/00127094-1723706
[15] Chenevier, G.: Familles \[p\] p-adiques de formes automorphes pour \[{\rm GL}_n\] GLn. J. Reine Angew. Math. 570, 143-217 (2004) · Zbl 1093.11036
[16] Chenevier, G.: On the infinite fern of Galois representations of unitary type. Ann. Sci. École Norm. Sup. 44, 963-1019 (2011) · Zbl 1279.11056 · doi:10.24033/asens.2158
[17] Chenevier, G.: Sur la densité des representations cristallines de \[{\rm Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\] Gal(Q¯p/Qp). Math. Ann. 355, 1469-1525 (2013) · Zbl 1283.11082 · doi:10.1007/s00208-012-0815-z
[18] Caraiani, A., Emerton, M., Gee, T., Geraghty, D., Paškūnas, V., Shin, S.W.: Patching and the \[p\] p-adic local Langlands correspondence. Camb. J. Math. (2016) (to appear) · Zbl 1403.11073
[19] Colmez, P.: Représentations triangulines de dimension \[22\]. Astérisque 319, 213-258 (2008) · Zbl 1168.11022
[20] Colmez, P., Dospinescu, G.: Complétés universels de représentations de \[{\rm GL}_2({\mathbb{Q}}_p)\] GL2(Qp). Algebra Number Theory (2016) (to appear) · Zbl 1309.11082
[21] Emerton, M.: On the interpolation of systems of Hecke eigenvalues attached to automorphic Hecke eigenforms. Invent. Math. 164, 1-84 (2006) · Zbl 1090.22008 · doi:10.1007/s00222-005-0448-x
[22] Emerton, M.: Jacquet modules of locally analytic representations of \[p\] p-adic reductive groups I. Construction and first properties. Ann. Sci. École Norm. Sup. 39, 775-839 (2006) · Zbl 1117.22008 · doi:10.1016/j.ansens.2006.08.001
[23] Emerton, M.: Jacquet modules of locally analytic representations of \[p\] p-adic reductive groups II. The relation to parabolic induction. J. Inst. Math. Jussieu (2016) (to appear) · Zbl 1201.14034
[24] Emerton, M., Gee, T., Herzig, F.: Weight cycling and Serre-type conjectures for unitary groups. Duke Math. J. 162, 1649-1722 (2013) · Zbl 1283.11083 · doi:10.1215/00127094-2266365
[25] Fontaine, J.-M.: Représentations \[\ell\] ℓ-adiques potentiellement semi-stables. Astérisque 223, 321-347 (1994) · Zbl 0873.14020
[26] Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (première partie). Pub. Math. I.H.É.S. 20 (1964) · Zbl 0136.15901
[27] Guralnick, R., Herzig, F., Taylor, R., Thorne, J.: Adequate subgroups (Appendix to [49]). J. Inst. Math. Jussieu 11, 907-920 (2012)
[28] Hartl, U., Hellmann, E.: The universal family of semi-stable \[p\] p-adic Galois representations. arXiv:1202.4408 · Zbl 1113.14016
[29] Hellmann, E.: Families of trianguline representations and finite slope spaces. arXiv:1202.4408 · Zbl 1269.11054
[30] Hellmann, E., Schraen, B.: Density of potentially crystalline representations of fixed weight. Composit. Math. (2016) (to appear) · Zbl 1448.11208
[31] Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990) · Zbl 0725.20028
[32] Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category \[\cal{O}O\], Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008) · Zbl 1177.17001
[33] de Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Publ. Math. I.H.É.S 82, 5-96 (1995) · Zbl 0864.14009 · doi:10.1007/BF02698637
[34] Kedlaya, K., Pottharst, J., Xiao, L.: Cohomology of arithmetic families of \[(\varphi,\Gamma )\](φ,Γ)-modules. J. Am. Math. Soc. 27, 1043-1115 (2014) · Zbl 1314.11028 · doi:10.1090/S0894-0347-2014-00794-3
[35] Kisin, M.: Overconvergent modular forms and the Fontaine-Mazur conjecture. Invent. Math. 153, 373-454 (2003) · Zbl 1045.11029 · doi:10.1007/s00222-003-0293-8
[36] Kisin, M.: Potentially semi-stable deformation rings. J. Am. Math. Soc. 21, 513-546 (2008) · Zbl 1205.11060 · doi:10.1090/S0894-0347-07-00576-0
[37] Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math. 170, 1085-1180 (2009) · Zbl 1201.14034 · doi:10.4007/annals.2009.170.1085
[38] Kohlhaase, J.: Invariant distributions on \[p\] p-adic analytic groups. Duke Math. J. 137, 19-62 (2007) · Zbl 1133.11066 · doi:10.1215/S0012-7094-07-13712-8
[39] Labesse, J.-P.: Changement de base CM et séries discrètes. Stab. Trace Formula Shimura Var. Arith. Appl. 1. Int. Press, Somerville (2011)
[40] Liu, R.: Cohomology and duality for \[(\varphi ,\Gamma )\](φ,Γ)-modules over the Robba ring. Int. Math. Res. Not. 3 (2008) · Zbl 1248.11093
[41] Liu, R.: Triangulation of refined families. Comment. Math. Helv. 90, 831-904 (2015) · Zbl 1376.11029 · doi:10.4171/CMH/372
[42] Ludwig, J.: On endoscopic \[p\] p-adic automorphic forms for \[{\rm SL}_2\] SL2. arXiv:1606.04708 · Zbl 1441.11137
[43] Nakamura, K.: Classification of two-dimensional split trianguline representations of \[p\] p-adic fields. Composit. Math. 145, 865-914 (2009) · Zbl 1225.11074 · doi:10.1112/S0010437X09004059
[44] Orlik, S., Strauch, M.: On Jordan-Hölder series of some locally analytic representations. J. Am. Math. Soc. 28, 99-157 (2015) · Zbl 1307.22009 · doi:10.1090/S0894-0347-2014-00803-1
[45] Schneider, P.: Nonarchimedean functional analysis. Springer Monographs in Mathematics. Springer, Berlin (2002) · Zbl 0998.46044 · doi:10.1007/978-3-662-04728-6
[46] Schneider, P., Teitelbaum, J.: Algebras of \[p\] p-adic distributions and admissible representations. Invent. Math. 153, 145-196 (2003) · Zbl 1028.11070 · doi:10.1007/s00222-002-0284-1
[47] Serre, J.-P.: Endomorphismes complètement continus des espaces de Banach \[p\] p-adiques. Pub. Math. I.H.É.S. 12, 69-85 (1962) · Zbl 0104.33601 · doi:10.1007/BF02684276
[48] Thorne, J.: On the automorphy of \[\ell\] ℓ-adic Galois representations with small residual image. J. Inst. Math. Jussieu 11, 855-906 (2012) · Zbl 1269.11054 · doi:10.1017/S1474748012000023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.