×

\(L\)-indistinguishability on eigenvarieties. (English) Zbl 1471.11183

Let \(B/\mathbb{Q}\) be a definite quaternion algebra, and \(\mathcal{H}\) universal the Hecke algebra acting on it. To each idempotent \(e\) of the \(\overline{\mathbb{Q}}\)-vector space of compactly supported \(\mathcal{C}^\infty\)-functions on the adelic points of the algebraic group of invertible elements of \(B\), one associates an eigenvariety \(\mathcal{D}(e)\). The \(\overline{\mathbb{Q}}_p\)-points of \(\mathcal{D}(e)\) embeds into the homomorphisms from \(\mathcal{H}\) to \(\overline{\mathbb{Q}}_p\) times the \(\overline{\mathbb{Q}}_p\)-valued points of the weight space \(\mathcal{W}=\mathrm{Hom}_\mathrm{cont}(\mathbb{Z}_p^\times,\overline{\mathbb{Q}}_p)\).
A point \(z\) in \(\mathcal{D}(e)(\overline{\mathbb{Q}})p)\) is called classical if there is a classical automorphic eigenform in the corresponding space of overconvergent forms, whose system of Hecke eigenvalues is that defined by \(z\); more generally, recall that points on the eigenvariety corresponds to Hecke packets of overconvergent modular forms.
The main result of this paper is the existence of Hecke packets coming from classical automorphic representations of an inner form of \(\mathrm{GL}(2)\) and two idempotents \(e_1\) and \(e_2\) such that the corresponding point in \(\mathcal{D}(e_1)\) is classical, while the corresponding point in \(\mathcal{D}(e_2)\) is not classical.
The proof of the theorem uses a \(p\)-adic version of a Labesse-Langlands transfer, developped by the author.

MSC:

11F85 \(p\)-adic theory, local fields
11F80 Galois representations
11F33 Congruences for modular and \(p\)-adic modular forms
11F12 Automorphic forms, one variable
14G22 Rigid analytic geometry
11S37 Langlands-Weil conjectures, nonabelian class field theory

References:

[1] J.Bellaïche and G.Chenevier, Families of Galois representations and Selmer groups, Astérisque324 (2009), xii+314. · Zbl 1192.11035
[2] C.Breuil and A.Mézard, Multiplicités modulaires et représentations de GL_2(Z_p) et de Gal(Q_p ̄/Q_p) en l = p, Duke Math. J.115(2) (2002), 205-310. With an appendix by Guy Henniart.10.1215/S0012-7094-02-11522-1 · Zbl 1042.11030 · doi:10.1215/S0012-7094-02-11522-1
[3] C. J.Bushnell and P. C.Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. Lond. Math. Soc. (3)77(3) (1998), 582-634.10.1112/S0024611598000574 · Zbl 0911.22014 · doi:10.1112/S0024611598000574
[4] K.Buzzard, Eigenvarieties, in L-Functions and Galois Representations, London Mathematical Society Lecture Note Series, Volume 320, pp. 59-120 (Cambridge University Press, Cambridge, 2007).10.1017/CBO9780511721267.004 · Zbl 1230.11054 · doi:10.1017/CBO9780511721267.004
[5] G.Chenevier, Familles p-adiques de formes automorphes pour GL_n, J. Reine Angew. Math.570 (2004), 143-217. · Zbl 1093.11036
[6] S. S.Gelbart, Automorphic Forms on Adèle Groups, Annals of Mathematics Studies, Volume 83 (Princeton University Press, Princeton, NJ, 1975). (University of Tokyo Press, Tokyo). · Zbl 0329.10018
[7] H.Jacquet and R. P.Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics, Volume 114 (Springer-Verlag, Berlin-New York, 1970).10.1007/BFb0058988 · Zbl 0236.12010 · doi:10.1007/BFb0058988
[8] J.-P.Labesse and R. P.Langlands, L-indistinguishability for SL(2), Canad. J. Math.31(4) (1979), 726-785.10.4153/CJM-1979-070-3 · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3
[9] D.Loeffler, Overconvergent algebraic automorphic forms, Proc. Lond. Math. Soc. (3)102(2) (2011), 193-228.10.1112/plms/pdq019 · Zbl 1232.11056 · doi:10.1112/plms/pdq019
[10] J.Ludwig, A <![CDATA \([p]]\)>-adic Labesse-Langlands transfer, Preprint, 2014, arXiv:1412.4140.
[11] D.Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2)152(1) (2000), 45-111.10.2307/2661379 · Zbl 0989.11023 · doi:10.2307/2661379
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.