×

Fully decoupled unconditionally stable Crank-Nicolson leapfrog numerical methods for the Cahn-Hilliard-Darcy system. (English) Zbl 07882735

Summary: We develop two totally decoupled, linear and second-order accurate numerical methods that are unconditionally energy stable for solving the Cahn-Hilliard-Darcy equations for two phase flows in porous media or in a Hele-Shaw cell. The implicit-explicit Crank-Nicolson leapfrog method is employed for the discretization of the Cahn-Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique and pressure correction methods are utilized, respectively, so that the Cahn-Hiliard equation and the update of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the numerical methods, including simulations of the Rayleigh-Taylor instability, the Saffman-Taylor instability (fingering phenomenon).
© 2024 Wiley Periodicals LLC.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Dxx Incompressible viscous fluids
76Mxx Basic methods in fluid mechanics
Full Text: DOI

References:

[1] W.Cai, W.Sun, J.Wang, and Z.Yang, Optimal
[( {L}^2 \]\) error estimates of unconditionally stable finite element schemes for the Cahn‐Hilliard‐Navier‐Stokes system, SIAM J. Numer. Anal.61 (2023), no. 3, 1218-1245. · Zbl 1529.65057
[2] C. Y.Chen, Y. S.Huang, and J.Miranda, Diffuse‐interface approach to rotating Hele‐Shaw flows, Phys. Rev. E84 (2011), 046302.
[3] J.Chen, S.Sun, and X.Wang, Homogenization of two‐phase fluid flow in porous media via volume averaging, J. Comput. Appl. Math.353 (2019), 265-282. https://doi.org/10.1016/j.cam.2018.12.023. · Zbl 1432.76252 · doi:10.1016/j.cam.2018.12.023
[4] L.Chen and J.Zhao, A novel second‐order linear scheme for the Cahn‐Hilliard‐Navier‐Stokes equations, J. Comput. Phys.423 (2020), 109782. https://doi.org/10.1016/j.jcp.2020.109782. · Zbl 07508402 · doi:10.1016/j.jcp.2020.109782
[5] R.Chen, Y.Li, K.Pan, and X.Yang, Efficient second‐order, linear, decoupled and unconditionally energy stable schemes of the Cahn‐Hilliard‐Darcy equations for the Hele‐Shaw flow, Numer. Math.92 (2022), 2275-2306. · Zbl 1512.65190
[6] W.Chen, Y.Liu, C.Wang, and S. M.Wise, Convergence analysis of a fully discrete finite difference scheme for the Cahn‐Hilliard‐Hele‐Shaw equation, Math. Compt.85 (2016), no. 301, 2231-2257. · Zbl 1342.65174
[7] W.Chen, S.Wang, Y.Zhang, D.Han, C.Wang, and X.Wang, Error estimate of a decoupled numerical scheme for the Cahn‐Hilliard‐Stokes‐Darcy system, IMA Numer. Anal.26 (2021), no. 1‐2, 1-34.
[8] S.Chono, T.Tsuji, and J.Sun, Numerical simulation of molding Hele‐Shaw flow of polymeric liquid crystals, J. Fluid Sci. Technol.2 (2007), no. 2, 368-379.
[9] L.Cueto‐Felgueroso and R.Juanes, A phase‐field model of two‐phase Hele‐Shaw flow, J. Fluid Mech.758 (2014), 522-552.
[10] K. R.Daly and T.Roose, Homogenization of two fluid flow in porous media, Proc. A471 (2015), no. 2176, 20140564. https://doi.org/10.1098/rspa.2014.0564. · Zbl 1371.76106 · doi:10.1098/rspa.2014.0564
[11] V.DeCaria, T.Illiescu, W.Layton, M.McLaughlin, and M.Schneier, An artificial compression reduced order model, SIAM J. Numer. Anal.58 (2020), 565-589. · Zbl 1434.76064
[12] V.DeCaria, W.Layton, and M.McLaughlin, A conservative, second order, unconditionally stable artificial compression method, Comput. Methods Appl. Mech. Eng.325 (2017), 733-747. · Zbl 1439.76059
[13] L.Dedè, H.Garcke, and K.Lam, A Hele‐Shaw‐Cahn‐Hilliard model for incompressible two‐phase flows with different densities, J. Math. Fluid Mech.20 (2018), no. 2, 531-567. · Zbl 1394.35353
[14] X.Feng and S.Wise, Analysis of a Darcy‐Cahn‐Hilliard diffuse interface model for the Hele‐Shaw flow and its fully discrete finite element approximation, SIAM J. Numer. Anal.50 (2012), no. 3, 1320-1343. · Zbl 1426.76258
[15] V.Ganesan and H.Brenner, A diffuse interface model of two‐phase flow in porous media, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.2000 (1996), no. 456, 731-803. https://doi.org/10.1098/rspa.2000.0537. · Zbl 1081.76056 · doi:10.1098/rspa.2000.0537
[16] Y.Gao, X.He, and Y.Nie, Second‐order, fully decoupled, linearized, and unconditionally stable scalar auxiliary variable schemes for Cahn‐Hilliard‐Darcy system, Numer. Methods Partial Differ. Equ.38 (2022), 1658-1683. · Zbl 1533.65163
[17] Y.Gao, R.Li, L.Mei, and Y.Lin, Second‐order order decoupled energy stable numerical scheme for Cahn‐Hilliard‐Hele‐Shaw system, Appl. Numer. Math.157 (2020), 338-355. · Zbl 1446.65110
[18] K.Glasner, A diffuse Interface approach to Hele‐Shaw flow, Nonlinearity16 (2003), 49-66. · Zbl 1138.76340
[19] J. L.Guermond and P.Minev, High‐order time stepping for the Navier‐Stokes equations with minimal computational complexity, J. Comput. Appl. Math.310 (2017), 92-103. · Zbl 1381.76217
[20] J. L.Guermond, P.Minev, and J.Shen, Error analysis of pressure‐correction schemes for the time‐dependent stokes equations with open boundary conditions, SIAM J. Numer. Anal.43 (2005), no. 1, 239-258. · Zbl 1083.76044
[21] J. L.Guermond and A.Salgado, A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys.228 (2009), no. 8, 2834-2846. · Zbl 1159.76028
[22] R.Guo, Y.Xia, and Y.Xu, An efficient fully‐discrete local discontinuous Galerkin method for the Cahn‐Hilliard‐Hele‐Shaw system, J. Comput. Phys.264 (2014), 23-40. · Zbl 1349.76211
[23] D.Han, A decoupled unconditionally stable numerical scheme for the Cahn‐Hilliard‐Hele‐Shaw system, J. Sci. Comput.66 (2016), no. 3, 1102-1121. · Zbl 1457.65109
[24] D.Han and N.Jiang, A second order, linear, unconditionally stable, crank‐Nicolson‐leapfrog scheme for phase field models of two‐phase incompressible flows, Appl. Math. Lett.108 (2020), 106521. · Zbl 1459.76091
[25] D.Han, D.Sun, and X.Wang, Two‐phase flows in karstic geometry, Math Methods Appl. Sci.37 (2014), no. 18, 3048-3063. · Zbl 1309.76204
[26] D.Han and X.Wang, Decoupled energy‐law preserving numerical schemes for the Cahn‐Hilliard‐Darcy system, Numer. Methods Partial. Differ. Equ.32 (2016), no. 3, 936-954. · Zbl 1381.76170
[27] D.Han and X.Wang, A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn‐Hilliard‐Darcy system, J. Sci. Comput.77 (2018), no. 2, 1210-1233. · Zbl 1407.65158
[28] G. M.Homsy, Viscous fingering in porous media, Annu. Rev. Fluid Mech.19 (1987), 277-311.
[29] M.Jiang, Z.Zhang, and J.Zhao, Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation, J. Comput. Phys.456 (2022), 110954. https://doi.org/10.1016/j.jcp.2022.110954. · Zbl 07518095 · doi:10.1016/j.jcp.2022.110954
[30] N.Jiang, Y.Li, and H.Yang, A conservative, second order, unconditionally stable artificial compression method, SIAM J. Numer. Anal.59 (2021), no. 1, 401-428. · Zbl 1467.65084
[31] V. J.Kan, A second‐order accurate pressure‐correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput.7 (1986), no. 3, 870-891. · Zbl 0594.76023
[32] W.Layton and C.Trenchea, Stability of two IMEX methods, CNLF and BDF2‐AB2, for uncoupling systems of evolution equations, Appl. Numer. Math.62 (2012), no. 2, 112-120. · Zbl 1237.65101
[33] H.Lee, J.Lowengrub, and J.Goodman, Modeling pinchoff and reconnection in a Hele‐Shaw cell. I. The models and their calibration, Phys. Fluids14 (2002), no. 2, 492-513. · Zbl 1184.76316
[34] Y.Li, Q.Yu, W.Fang, B.Xia, and J.Kim, A stable second‐order BDF scheme for three dimensional Cahn‐Hilliard‐Hele‐Shaw system, Adv. Comput. Math.47 (2021), no. 3, 1-18. · Zbl 1464.76127
[35] Y.Li, W.Yu, J.Zhao, and Q.Wang, Second order linear decoupled energy dissipation rate preserving schemes for the Cahn‐Hilliard‐extended‐Darcy model, J. Comput. Phys.444 (2021), 110561. · Zbl 07515453
[36] Y.Liu, W.Chen, C.Wang, and S.Wise, Error analysis of a mixed finite element method for a Cahn‐Hilliard‐Hele‐Shaw system, Numer. Math.135 (2017), no. 3, 679-709. · Zbl 1516.65091
[37] H. W.Lu, K.Glasner, L. A.Bertozzi, and C. J.Kim, A diffuse‐interface model for electrowetting drops in a Hele‐Shaw cell, J. Fluid Mech.590 (2007), 411-435. · Zbl 1141.76482
[38] L.Qian, C.Wu, H.Cai, X.Feng, and Y.Qiao, A fully‐decoupled artificial compressible crank‐Nicolson‐leapfrog time stepping scheme for the phase field model of two‐phase incompressible flows, J. Sci. Comput.94 (2023), 50. · Zbl 1516.65098
[39] P. G.Saffman and G.Taylor, The penetration of a fluid into a porous medium or Hele‐Shaw cell containing a more viscous liquid, Proc. R. Soc. London Ser. A245 (1958), 312-329 (2 plates). · Zbl 0086.41603
[40] M.Schmuck, M.Pradas, G. A.Pavliotis, and S.Kalliadasis, Upscaled phase‐field models for interfacial dynamics in strongly heterogeneous domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.468 (2012), no. 2147, 3705-3724. https://doi.org/10.1098/rspa.2012.0020. · Zbl 1371.76141 · doi:10.1098/rspa.2012.0020
[41] M.Schmuck, M.Pradas, G. A.Pavliotis, and S.Kalliadasis, Derivation of effective macroscopic Stokes‐Cahn‐Hilliard equations for periodic immiscible flows in porous media, Nonlinearity26 (2013), no. 12, 3259-3277. · Zbl 1302.76184
[42] Y.Sun and C.Beckermann, A two‐phase diffuse‐interface model for Hele‐Shaw flows with large property contrasts, Phys. D237 (2008), 3089-3098. · Zbl 1407.76035
[43] C.Wang, J.Wang, Z.Xia, D.Han, and L.Xu, Optimal error estimates of a Crank‐Nicolson finite element projection method for magnetohydrodynamic equations, ESAIM Math. Model Numer. Anal.56 (2022), no. 3, 769-787.
[44] S.Wise, J.Lowengrub, H.Frieboes, and V.Cristini, Three‐dimensional multispecies nonlinear tumor growth‐I model and numerical method, J. Theor. Biol.253 (2008), no. 3, 524-543. · Zbl 1398.92135
[45] K.Wu, F.Huang, and J.Shen, A new class of higher‐order decoupled schemes for the incompressible Navier‐stokes equations and applications to rotating dynamics, J. Comput. Phys.458 (2022), 111097. https://doi.org/10.1016/j.jcp.2022.111097. · Zbl 07527723 · doi:10.1016/j.jcp.2022.111097
[46] J.Yang and J.Kim, An efficient stabilized multiple auxiliary variables method for the Cahn‐Hilliard‐Darcy two‐phase flow system, Comput. Fluids223 (2021), 104948. · Zbl 1521.76377
[47] X.Yang, On a novel fully‐decoupled, linear and second‐order accurate numerical scheme for the Cahn‐Hilliard‐Darcy system of two‐phase Hele‐Shaw flow, Comput. Phys. Commun.263 (2021), 107868. · Zbl 1539.65146
[48] M.Zhang and T.Maxworthy, The interactive dynamics of flow and directional solidification in a Hele‐Shaw cell part I. Experimental investigation of parallel shear flow, J. Fluid Mech.470 (2002), 247-268. · Zbl 1161.76463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.