×

A conservative, second order, unconditionally stable artificial compression method. (English) Zbl 1439.76059

Summary: This report presents a new artificial compression method for incompressible, viscous flows. The method has second order consistency error and is unconditionally, long time, energy stable for the velocity and, weighted by the timestep, for the pressure. It uncouples the pressure and velocity and requires no artificial pressure boundary conditions. When the viscosity \(\nu = 0\) the method also exactly conserves a system energy. The method is based on a Crank-Nicolson Leapfrog time discretization of the slightly compressible model \[\begin{aligned}(1 - \varepsilon_1 \operatorname{grad} \operatorname{div}) u_t + u \cdot \nabla u + \frac{1}{2}(\operatorname{div} u) u - \nu \Delta u + \nabla p = f \\ \text{and } \varepsilon_2 p_t + \operatorname{div} u = 0 .\end{aligned}\] This report presents the method, gives a stability analysis, presents numerical tests and gives a preliminary analysis with tests of the non-physical acoustic waves generated. Consideration of the physical fidelity of the artificial compression method leads to a related method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FreeFem++
Full Text: DOI

References:

[1] Zeytounian, R. Kh., Topics in Hyposonic Flow Theory. LN in Physics (2006), Springer: Springer Berlin · Zbl 1088.76001
[2] Bowers, A.; Le Borne, S.; Rebholz, L., Error analysis and iterative solvers for Navier-Stokes projection methods with standard and sparse grad-div stabilization, CMAME, 275, 1-19 (2014) · Zbl 1296.76079
[3] Charnyi, S.; Heister, T.; Olshanskii, M. A.; Rebholz, L. G., On conservation laws of Navier-Stokes Galerkin discretizations, J. Comput. Phys., 337, 289-308 (2017) · Zbl 1415.65222
[4] Ingram, R., Unconditional convergence of high-order extrapolations of the Crank-Nicolson, finite element method for the Navier-Stokes equations, Int. J. Numer. Anal. Model, 10, 257-297 (2013) · Zbl 1264.76060
[5] G.A. Baker, Galerkin approximations for the Navier-Stokes equations, Technical Report, 1976.; G.A. Baker, Galerkin approximations for the Navier-Stokes equations, Technical Report, 1976.
[6] Temam, R., Sur l’approximation de la solution des equations de Navier-Stokes par la method des pas fractionaires (I), Arch. Ration. Mech. Anal., 32, 135-153 (1969) · Zbl 0195.46001
[7] Yanenko, N., The Method of Fractional Steps (1971), Springer: Springer Berlin · Zbl 0209.47103
[8] Peyret, R.; Taylor, T., Computational Methods for Fluid Flow (1983), Springer: Springer Berlin · Zbl 0514.76001
[9] Yang, L.; Badia, S.; Codina, R., A pseudo-compressible variational multiscale solver for turbulent incompressible flows, Comput. Mech., 58, 1051-1069 (2016) · Zbl 1398.76042
[10] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comp., 22, 745-762 (1968) · Zbl 0198.50103
[11] Jiang, N.; Kubacki, M.; Layton, W.; Moraiti, M.; Tran, H., A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications, J. Comput. Appl. Math., 281, 263-276 (2015) · Zbl 1308.65144
[12] Prohl, A., Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations (1997), Springer: Springer Berlin · Zbl 0874.76002
[13] Guermond, J.-L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, 6011-6045 (2006) · Zbl 1122.76072
[14] Akbas, M.; Kaya, S.; Jaman, M. M.; Rebholz, L., Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in Elsässer a variable, Int. J. Numer. Anal. Model., 13, 90-113 (2016) · Zbl 1345.76114
[15] D. Grapsas, R. Herbin, W. Kheriji, J.-C. Latché, An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations, 2015.; D. Grapsas, R. Herbin, W. Kheriji, J.-C. Latché, An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations, 2015.
[16] Johnston, H.; Liu, J.-G., Accurate, stable and efficient Navier-Stokes solvers based on an explicit treatment of the pressure term, J. Comput. Phys., 199, 221-259 (2004) · Zbl 1127.76343
[17] Van Kan, J., A second order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Comput., 7, 870-891 (1986) · Zbl 0594.76023
[18] Olshanskii, M. A.; Sokolov, A.; Turek, S., Error analysis of a projection method for the Navier-Stokes equations with Coriolis force, JMFM, 12, 485-502 (2010) · Zbl 1270.76055
[19] Guermond, J.-L.; Minev, P., High-order time stepping for the incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 37, 6, A2656-A2681 (2015) · Zbl 1382.65315
[20] Guermond, J.-L.; Minev, P., High-order time stepping for the Navier-Stokes equations with minimal computational complexity, JCAM, 310, 92-103 (2017) · Zbl 1381.76217
[21] Ohwada, T.; Asinari, P., Artificial compressibility method revisited: Asymptotic numerical method for incompressible Navier Stokes equations, J. Comput. Phys., 229, 1698-1723 (2010) · Zbl 1329.76063
[22] Shen, J., On error estimates of the projection method for the Navier-Stokes equations: Second order schemes, Math. Comp., 65, 1039-1065 (1996) · Zbl 0855.76049
[23] Van der Heul, D. R.; Vuik, C.; Wesseling, P., A conservative pressure-correction method for flow at all speeds, Comput. & Fluids, 32, 1113-1132 (2003) · Zbl 1046.76033
[24] Shen, J., On error estimates of higher order projection and penalty-projection schemes for the Navier-Stokes equations, Numer. Math., 62, 49-73 (1992) · Zbl 0782.76025
[25] Jiang, N.; Layton, W., Numerical analysis of two ensemble Eddy viscosity numerical regularizations of fluid motion, Numer. Methods Partial Differential Equations, 31, 630-651 (2015) · Zbl 1325.65135
[26] Egbers, C.; Pfister, G., (Physics of Rotating Fluids. Physics of Rotating Fluids, Springer LN in Physics, vol. 549 (2000))
[27] Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows - A Guide To Theory, Practices, and Algorithms (1989), Academic Press · Zbl 0697.76031
[28] Pironneau, O., The Finite Element Methods for Fluids (1983), John Wiley: John Wiley Chichester
[29] Quartapelle, L., Numerical Solution of the Incompressible Navier-Stokes Equations (1993), Birkhauser: Birkhauser Verlag · Zbl 0784.76020
[30] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer: Springer Berlin · Zbl 0804.65101
[31] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-4, 251-265 (2012), 65Y15 · Zbl 1266.68090
[32] Gresho, P. M.; Sani, R. L., Incompressible Flows and the Finite Element Method, vol. 2 (2000), John Wiley and Sons: John Wiley and Sons Chichester · Zbl 0988.76005
[33] Layton, W.; Rebholz, L., On relaxation times in the Navier-Stokes-Voigt Model, IJCFD, 27, 184-187 (2013) · Zbl 07508633
[34] Lighthill, M. J., On sound generated aerodynamically. Part I: General theory, Proc. R. Soc. Lond. Ser. A, 211, 564-587 (1952) · Zbl 0049.25905
[35] Layton, W.; Novotny, A., The exact derivation of the Lighthill acoustic analogy for low Mach number flows, Adv. Math. Fluid Mech., 247-279 (2009) · Zbl 1204.35135
[36] Case, M.; Ervin, V.; Linke, A.; Rebholz, L., A connection between Scott-Vogelius elements and grad-div stabilization, SIAM J. Numer. Anal., 49, 1461-1481 (2011) · Zbl 1244.76021
[37] Zeytounian, R. Kh., Theory and Applications of Viscous Fluid Flows (2004), Springer: Springer Berlin · Zbl 1047.76002
[38] Kreiss, H.-O., On the limitations of calculations in fluid dynamics, (Hafez, M.; Oshima, K., CFD Review 1995 (1995), Wiley: Wiley Chichester), 37-53 · Zbl 0875.76381
[39] Williams, P. D., The RAW filter: An improvement to the Robert-Asselin filter in semi-implicit integrations, Mon. Weather Rev., 139, 1996-2007 (2010)
[40] Hurl, N.; Layton, W.; Li, Y.; Trenchea, C., Stability analysis of the Crank-Nicolson-Leapfrog method with the Robert-Asselin-Williams time filter, BIT, 54, 1009-1021 (2014) · Zbl 1325.65113
[41] Layton, W.; Li, Y.; Trenchea, C., Recent developments in IMEX methods with time filters for systems of evolution equations, JCAM, 299, 50-67 (2016) · Zbl 1333.65100
[42] Liu, J.-G.; Liu, J.; Pego, R., Stable and accurate pressure approximation for unsteady incompressible viscous flow, J. Comput. Phys., 229, 3428-3453 (2010) · Zbl 1307.76029
[43] Kobel’kov, G. M., Symmetric approximations of the navier-stokes equations, Sb. Math., 193, 1027-1047 (2002) · Zbl 1055.76009
[44] Shen, J., On error estimates of projection methods for the Navier-Stokes equations: First order schemes, SINUM, 29, 57-77 (1992) · Zbl 0741.76051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.