×

Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow. (English) Zbl 1512.65190

The authors establish two efficient numerical schemes to solve the Cahn-Hilliard-Darcy equations based on the IEQ (Invariant Energy Quadratization) method and one scheme based on the SAV (Scalar Auxiliary Variable) method. These schemes are (i) second-order accurate in time, (ii) unconditionally energy stable, (iii) linear and decoupled. Some numerical examples are presented to support the theoretical results.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N08 Finite volume methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
76D27 Other free boundary flows; Hele-Shaw flows
76U05 General theory of rotating fluids
76M12 Finite volume methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Alvarez-Lacalle, E.; Ortín, J.; Casademunt, J., Low viscosity contrast fingering in a rotating Hele-Shaw cell, Phy. Fluids, 16, 4, 908-924 (2004) · Zbl 1186.76025
[2] Cahn, JW; Hilliard, JE, Free energy of a nonuniform system. i. interfacial free energy, J. Chem. Phys., 28, 2, 258-267 (1958) · Zbl 1431.35066
[3] Carrillo, Ll; Magdaleno, FX; Casademunt, J.; Ortín, J., Experiments in a rotating hele-shaw cell, Phy. Rev. E, 54, 6, 6260-6267 (1958)
[4] Chen, C.; Yang, X., Fully-decoupled, energy stable second-order time-accurate and finite element numerical scheme of the binary immiscible Nematic-Newtonian model, Comput. Methods Appl. Mech. Eng., 395, 114963 (2022) · Zbl 1507.76012
[5] Chen, C.; Yang, X., A Second-order time accurate and fully-decoupled numerical scheme of the Darcy-Newtonian-Nematic model for two-phase complex fluids confined in the Hele-Shaw cell, J. Comput. Phys., 456, 111026 (2022) · Zbl 07518104
[6] Chen, CY; Huang, YS, Diffuse-interface approach to rotating hele-shaw flows, Phys. Rev. E, 84, 4, 046302 (2011)
[7] Chen, R.; Ji, G.; Yang, X.; Zhang, H., Decoupled energy stable schemes for phase-field vesicle membrane model, J. Comput. Phys., 302, 509-523 (2015) · Zbl 1349.76842
[8] Chen, R.; Yang, X.; Zhang, H., Second order, linear, and unconditionaly energy stable schemes for a hydrodynamic model of smectic-a liquid crystals, SIAM J. Sci. Comput., 39, 6, A2808-A2833 (2017) · Zbl 1388.76201
[9] Chen, R.; Yang, X.; Zhang, H., Decoupled, energy stable scheme for hydrodynamic allen-cahn phase field moving contact line model, J. Comput. Math., 36, 5, 661-681 (2018) · Zbl 1424.76022
[10] Chen, W.; Feng, W.; Liu, Y.; Wang, C.; Wise, SM, A second order energy stable scheme for the cahn-hilliard-hele-shaw equations, Discrete Contin. Dyn. Syst. - B, 24, 1, 149-182 (2019) · Zbl 1407.65097
[11] Cueto-Felgueroso, L.; Juanes, R., A phase-field model of two-phase hele-shaw flow, J. Fluid Mech., 758, 522-552 (2014)
[12] Dong, S.; Shen, J., A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase imcompressible flows with large density ratios, J. Comput. Phys., 231, 5788-5804 (2012) · Zbl 1277.76118
[13] Weinan, E.; Liu, J-G, Projection method. I. Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32, 4, 1017-1057 (1995) · Zbl 0842.76052
[14] Feng, X., Fully discrete finite element approximations of the navier-stokes-cahn-hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 1049-1072 (2006) · Zbl 1344.76052
[15] Feng, X.; Wise, S., Analysis of a darcy-cahn-hilliard diffuse interface model for the hele-shaw flow and its fully discrete finite element approximation, SIAM J. Numer. Anal., 50, 1320-1343 (2012) · Zbl 1426.76258
[16] Grün, G., On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities, SIAM J. Numer. Anal., 51, 3036-3061 (2013) · Zbl 1331.35277
[17] Guo, R.; Xia, Y.; Xu, Y., An efficient fully-discrete local discontinuous galerkin method for the cahn- hilliard-hele-shaw system, J. Comput. Phys., 264, 2834-2846 (2014) · Zbl 1349.76211
[18] Guo, Z.; Lin, P.; Lowengrub, JS, A numerical method for the quasi-incompressible cahn-hilliard-navier-stokes equations for variable density flows with a discrete energy law, J. Comput. Phys., 276, 486-507 (2014) · Zbl 1349.76057
[19] Han, D.; Wang, X., A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system, J. Sci. Comput., 77, 1210-1233 (2018) · Zbl 1407.65158
[20] Ingram, R., A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations, Math. Comp., 82, 284, 1953-1973 (2013) · Zbl 1457.65115
[21] Lee, H.; Lowengrub, JS; Goodman, J., Modeling pinchoff and reconection in a hele-shaw cell. i. the models and their calibration, Phys. Fluids, 14, 2, 492-513 (2002) · Zbl 1184.76316
[22] Lee, H.; Lowengrub, JS; Goodman, J., Modeling pinchoff and reconection in a hele-shaw cell. ii. analysis and simulation in the nonlinear regime, Phys. Fluids, 14, 2, 514-545 (2002) · Zbl 1184.76317
[23] Liu, C.; Shen, J.; Yang, X., Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation, Commun. Comput. Phys., 2, 1184-1198 (2007) · Zbl 1164.76422
[24] Liu, C.; Shen, J.; Yang, X., Decouppled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density, J. Sci. Comput., 62, 601-622 (2014) · Zbl 1326.76064
[25] Shen, J., On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes, Math. Comp., 65, 215, 1039-1065 (1996) · Zbl 0855.76049
[26] Shen, J.; Wang, C.; Wang, X.; Wise, SM, Second-order converx splitting schemes for gradient flows with ehrlich-schewoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50, 105-125 (2012) · Zbl 1247.65088
[27] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61, 3, 474-506 (2019) · Zbl 1422.65080
[28] Shen, J.; Yang, X., Decoupled energy stable schemes for phase-field models of two-phase complex fluids, SIAM J. Sci. Comput., 36, 122-145 (2014) · Zbl 1288.76057
[29] Shen, J.; Yang, X., Decoupled energy stable schemes for phase-field models of two-phase incompressible flows, SIAM J. Numer. Anal., 53, 279-296 (2015) · Zbl 1327.65178
[30] Shen, J.; Yang, X.; Yu, H., Efficient energy stable numerical schemes for a phase-field moving contact line model, J. Comput. Phys., 284, 617-630 (2015) · Zbl 1351.76184
[31] Tabeling, P.; Zocchi, G.; Libchaber, A., An experiment study of the saffman-taylor instability, J. Fluid Mech., 177, 67-82 (1987)
[32] van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput., 7, 3, 870-891 (1986) · Zbl 0594.76023
[33] Wise, SM, Unconditionally stable finite difference, nonliear multigrid simulation of the cahn-hilliard-hele-shaw system of equations, J. Sci. Comput., 44, 38-68 (2010) · Zbl 1203.76153
[34] Yang, X., Linear, first and second-order, unconditionaly energy stable numerical schems for the phase-field model of homopolymer blends, J. Comput. Phys., 327, 294-316 (2016) · Zbl 1373.82106
[35] Yang, X., On a novel fully-decoupled, linear and second-order accurate numerical scheme for the Cahn-Hilliard-Darcy system of two- phase Hele-Shaw flow, Comput. Phys. Commun., 263, 107868 (2021) · Zbl 1539.65146
[36] Yang, X., A novel second-order time marching scheme for the Navier-Stokes/Darcy coupled with mass-conserved Allen-Cahn phase-field models of two-phase incompressible flow, Comput. Methods Appl. Mech. Engrg., 377, 113597 (2021) · Zbl 1506.76144
[37] Yang, X., A novel fully-decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow, Int. J. Numer. Methods Eng., 122, 1283-1306 (2021) · Zbl 07863112
[38] Zhang, G-D; He, X.; Yang, X., Decoupled, linear, and unconditionally energy stable fully-discrete finite element numerical scheme for a two-phase ferrohydrodynamics model, SIAM J. Sci. Comput., 43, B167-B193 (2021) · Zbl 1469.65152
[39] Yang, X., On a novel fully-decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model, SIAM J. Sci. Comput., 43, B479-B507 (2021) · Zbl 1478.65100
[40] Gao, Y.; He, X.; Mei, L.; Yang, X., Decoupled, linear, and energy stable finite element method for Cahn-Hilliard-Navier-Stokes-Darcy phase-field model, SIAM J. Sci. Comput., 40, B110-B137 (2018) · Zbl 1426.76261
[41] Yang, X.; Ju, L., Efficient linear schemes with unconditionally energy stability for the phase-field elastic bending energy model, Comput. Methods Appl. Mech Engrg., 315, 691-712 (2017) · Zbl 1439.74165
[42] Yang, X.; Ju, L., Linear unconditionally energy stable schemes for the binary fluid surfactant phase-field model, Comput. Methods Appl. Mech. Engrg., 318, 1005-1029 (2017) · Zbl 1439.76029
[43] Yang, X.; Zhao, J.; Wang, Q., Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333, 104-127 (2017) · Zbl 1375.82121
[44] Yang, X.; Zhao, J.; Wang, Q.; Shen, J., Numerical approximations for a three components cahn-hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27, 1993-2030 (2017) · Zbl 1393.80003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.