×

A fully-decoupled artificial compressible Crank-Nicolson-leapfrog time stepping scheme for the phase field model of two-phase incompressible flows. (English) Zbl 1516.65098

Summary: In this paper, we consider efficient numerical approximations for the phase field model of two-phase incompressible flows. To develop easy-to-implement time stepping scheme, we introduce two types of nonlocal auxiliary variables to achieve highly efficient and fully-decoupled scheme based on the Crank-Nicolson-Leapfrog (CNLF) formula and artificial compression method. We prove that the scheme is linear and unconditionally energy stable. Ample numerical experiments are performed to demonstrate the accuracy, stability and efficiency.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76T06 Liquid-liquid two component flows
35Q35 PDEs in connection with fluid mechanics

Software:

FreeFem++
Full Text: DOI

References:

[1] Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, vol. 30, pp. 139-165. Palo Alto, CA (1998) · Zbl 1398.76051
[2] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2002) · Zbl 1012.65115
[3] Bresch, D.; Koko, J., Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids, Int. J. Appl. Math. Comput. Sci., 16, 419-429 (2006) · Zbl 1119.35346
[4] Burman, E.; Fernández, MA, Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method, C. R. Math. Acad. Sci. Paris, 345, 467-472 (2007) · Zbl 1126.74047 · doi:10.1016/j.crma.2007.09.010
[5] Causin, P.; Gerbeau, JF; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Eng., 194, 4506-4527 (2005) · Zbl 1101.74027 · doi:10.1016/j.cma.2004.12.005
[6] Chen, Q.; Shen, J., Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model, SIAM J. Sci. Comput., 40, A3982-A4006 (2018) · Zbl 1403.65045 · doi:10.1137/18M1166961
[7] DeCaria, V.; Layton, W.; McLaughlin, M., A conservative, second order, unconditionally stable artificial compression method, Comput. Methods Appl. Mech. Eng., 325, 733-747 (2017) · Zbl 1439.76059 · doi:10.1016/j.cma.2017.07.033
[8] Gurtin, ME; Polignone, D.; Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6, 6, 815-831 (1996) · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[9] Han, DZ; Jiang, N., A second order, linear, unconditionally stable, Crank-Nicolson-Leapfrog scheme for phase field models of two-phase incompressible flows, Appl. Math. Lett., 108 (2020) · Zbl 1459.76091 · doi:10.1016/j.aml.2020.106521
[10] Han, DZ; Wang, XM, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput. Phys., 290, 139-156 (2015) · Zbl 1349.76213 · doi:10.1016/j.jcp.2015.02.046
[11] He, YN, Two-level methods based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41, 1263-1285 (2003) · Zbl 1130.76365 · doi:10.1137/S0036142901385659
[12] He, YN; Sun, WW, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45, 837-869 (2007) · Zbl 1145.35318 · doi:10.1137/050639910
[13] He, YN; Sun, WW, Stabilized finite element methods based on Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations, Math. Comput., 76, 115-136 (2007) · Zbl 1129.35004 · doi:10.1090/S0025-5718-06-01886-2
[14] Hecht, F., New development in Freefem++, J. Numer. Math., 20, 251-265 (2012) · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[15] Huang, F.; Shen, J.; Yang, Z., A highly efficient and accurate new scalar auxiliary variable approach for gradient flows, SIAM J. Sci. Comput., 42, 4, A2514-A2536 (2020) · Zbl 1451.65210 · doi:10.1137/19M1298627
[16] Hurl, N.; Layton, W.; Li, Y.; Trenchea, C., Stability analysis of the Crank-Nicolson-Leapfrog method with the Robert-Asselin-Williams time filter, BIT Numer. Math., 54, 1009-1021 (2014) · Zbl 1325.65113 · doi:10.1007/s10543-014-0493-1
[17] Huang, YQ; Li, JC; Lin, Q., Superconvergence analysis for time-dependent Maxwells equations in metamaterials, Numer. Methods PDEs, 28, 1794-1816 (2012) · Zbl 1252.78030 · doi:10.1002/num.20703
[18] Huang, YQ; Li, JC; Yang, W., Modeling backward wave propagation in metamaterials by the finite element time-domain method, SIAM J. Sci. Comput., 35, B248-B274 (2013) · Zbl 1274.78090 · doi:10.1137/120869869
[19] Huang, YQ; Li, JC; Yang, W., Theoretical and numerical analysis of a non-local dispersion model for light interaction with metallic nanostructures, Comput. Math. Appl., 72, 921-932 (2016) · Zbl 1359.78016 · doi:10.1016/j.camwa.2016.06.003
[20] Jiang, M.; Zhang, Z.; Zhao, J., Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation, J. Comput. Phys., 456 (2022) · Zbl 07518095 · doi:10.1016/j.jcp.2022.110954
[21] Jiang, N.; Kubacki, M.; Layton, W.; Trenchea, C., A Crank-Nicolson Leapfrog stabilization: unconditional stability and two applications, J. Comput. Appl. Math., 281, 263-276 (2015) · Zbl 1308.65144 · doi:10.1016/j.cam.2014.09.026
[22] Kubacki, M., Uncoupling evolutionary groundwater-surface water flows using the Crank-Nicolson Leapfrog method, Numer. Methods PDEs, 29, 1192-1216 (2013) · Zbl 1312.76043 · doi:10.1002/num.21751
[23] Li, JC, Numerical convergence and physical fidelity analysis for Maxwells equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 198, 3161-3172 (2009) · Zbl 1229.78024 · doi:10.1016/j.cma.2009.05.018
[24] Li, JC; Huang, YQ; Lin, YP, Developing finite element methods for Maxwells equations in a Cole-Cole dispersive medium, SIAM J. Sci. Comput., 33, 3153-3174 (2011) · Zbl 1238.65097 · doi:10.1137/110827624
[25] Li, JC; Waters, JW; Machorro, EA, An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwells equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 223-224, 43-54 (2012) · Zbl 1253.78008 · doi:10.1016/j.cma.2012.02.016
[26] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179, 34, 211-228 (2003) · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[27] Qian, L.; Feng, X.; He, Y., Crank-Nicolson Leap-Frog time stepping decoupled scheme for the fluid-fluid interaction problems, J. Sci. Comput., 84, 4 (2020) · Zbl 1447.65088 · doi:10.1007/s10915-020-01254-5
[28] Qian, L.; Feng, X.; He, Y., The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems, Appl. Math. Model., 36, 561-572 (2012) · Zbl 1236.76041 · doi:10.1016/j.apm.2011.07.034
[29] Shen, J., On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes, Math. Comput., 65, 1039-1065 (1996) · Zbl 0855.76049 · doi:10.1090/S0025-5718-96-00750-8
[30] Shen, J.; Wang, C.; Wang, XM; Wise, SM, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50, 1, 105-125 (2012) · Zbl 1247.65088 · doi:10.1137/110822839
[31] Shen, J.; Xue, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61, 474-506 (2019) · Zbl 1422.65080 · doi:10.1137/17M1150153
[32] Tang, Q.; Huang, Y., Stability and convergence analysis of a Crank-Nicolson leap-frog scheme for the unsteady incompressible Navier-Stokes equations, Appl. Numer. Math., 124, 110-129 (2017) · Zbl 1376.76027 · doi:10.1016/j.apnum.2017.09.012
[33] Wang, X.; Ju, L.; Du, Q., Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys., 316, 21-38 (2016) · Zbl 1349.92015 · doi:10.1016/j.jcp.2016.04.004
[34] Yang, X.; Ju, L., Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model, Comput. Methods Appl. Mech. Eng., 315, 691-712 (2017) · Zbl 1439.74165 · doi:10.1016/j.cma.2016.10.041
[35] Yang, X., Numerical approximations of the Navier-Stokes equation coupled with volume-conserved multi-phase-field vesicles system: fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme, Comput. Methods Appl. Mech. Eng., 375 (2021) · Zbl 1506.76105 · doi:10.1016/j.cma.2020.113600
[36] Yang, X., A new efficient fully-decoupled and second-order time-accurate scheme for Cahn-Hilliard phase-field model of three-phase incompressible flow, Comput. Methods Appl. Mech. Eng., 376 (2021) · Zbl 1506.76193 · doi:10.1016/j.cma.2020.113589
[37] Zhang, Y., Shen, J.: A generalized SAV approach with relaxation for dissipative systems. arXiv:2201.12587 (2022) · Zbl 07540356
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.