×

L-invariants for cohomological representations of PGL(2) over arbitrary number fields. (English) Zbl 07862238

Summary: Let \(\pi\) be a cuspidal, cohomological automorphic representation of an inner form \(G\) of \(\operatorname{PGL}_2\) over a number field \(F\) of arbitrary signature. Further, let \(\mathfrak{p}\) be a prime of \(F\) such that \(G\) is split at \(\mathfrak{p}\) and the local component \(\pi_{\mathfrak{p}}\) of \(\pi\) at \(\mathfrak{p}\) is the Steinberg representation. Assuming that the representation is noncritical at \(\mathfrak{p}\), we construct automorphic \(\mathcal{L}\)-invariants for the representation \(\pi\). If the number field \(F\) is totally real, we show that these automorphic \(\mathcal{L}\)-invariants agree with the Fontaine-Mazur \(\mathcal{L}\)-invariant of the associated \(p\)-adic Galois representation. This generalizes a recent result of Spieß respectively Rosso and the first named author from the case of parallel weight \(2\) to arbitrary cohomological weights.

MSC:

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11F33 Congruences for modular and \(p\)-adic modular forms
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F75 Cohomology of arithmetic groups
11F80 Galois representations

References:

[1] Ash, A. and Stevens, G., ‘ \(p\) -adic deformations of arithmetic cohomology’, Preprint, 2008.
[2] Barrera Salazar, D., Dimitrov, M. and Jorza, A., ‘ \(p\) -adic \(L\) -functions of Hilbert cusp forms and the trivial zero conjecture’, J. Eur. Math. Soc. (JEMS)14(10) (2022), 3439-3503. · Zbl 1523.11092
[3] Barrera Salazar, D. and Williams, C., ‘Exceptional zeros and L-invariants of Bianchi modular forms’, Trans. Amer. Math. Soc.371 (2019), 1-34. · Zbl 1443.11060
[4] Salazar, D. Barrera and Williams, C., ‘ \(p\) -adic \(L\) -functions for \({GL}_2\) ’, Canad. J. Math.71(5) (2019), 1019-1059. · Zbl 1470.11103
[5] Bergdall, J. and Hansen, D., ‘On p-adic L-functions for Hilbert modular forms’, Mem. Amer. Math. Soc. To appear. · Zbl 07913525
[6] Bertolini, M., Darmon, H. and Iovita, A., ‘Families of automorphic forms on definite quaternion algebras and Teitelbaum’s conjecture’, Astérisque331 (2010), 29-64. · Zbl 1251.11033
[7] Borel, A. and Serre, J.-P., ‘Corners and arithmetic groups’, Comment. Math. Helv.48(1) (1973), 436-491. · Zbl 0274.22011
[8] Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Mathematical Surveys and Monographs (American Mathematical Society, 2000). · Zbl 0980.22015
[9] Breuil, C., ‘Invariant et série spéciale p-adique’, Ann. Sci. Ec. Norm. Super.37(4) (2004), 559-610. · Zbl 1166.11331
[10] Breuil, C., ‘Série spéciale p-adique et cohomologie étale complétée’, Astérisque331 (2010), 65-115. · Zbl 1246.11106
[11] Breuil, C., ‘Remarks on some locally \({\mathbb{Q}}_p\) -analytic representations of \({GL}_2(F)\) in the crystalline case’, in Non-Abelian Fundamental Groups and Iwasawa Theory, London Mathematical Society Lecture Note Series (Cambridge University Press, 2011), 212-238. · Zbl 1312.11045
[12] Bump, D., Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 1997). · Zbl 0911.11022
[13] Casselman, W., ‘On some results of Atkin and Lehner’, Math. Ann.201(4) (1973), 301-314. · Zbl 0239.10015
[14] Chida, M., Mok, C. and Park, J., ‘On Teitelbaum type L-invariants of Hilbert modular forms attached to definite quaternions’, J. Number Theory147 (2015), 633-665. · Zbl 1380.11048
[15] Dat, J., ‘Espaces symétriques de Drinfeld et correspondance de Langlands locale’, Ann. Sci. Ec. Norm. Super. 4e série, 39(1) (2006), 1-74. · Zbl 1141.22004
[16] Ding, Y., ‘ℒ-invariants and local-global compatibility for the group \({\rm GL}_2/F\) ’, Forum Math. Sigma4 (2016), Paper No. e13, 49. · Zbl 1376.11082
[17] Ding, Y., ‘ℒ-invariants, partially de Rham families, and local-global compatibility’, Ann. Inst. Fourier (Grenoble)67(4) (2017), 1457-1519. · Zbl 1433.11131
[18] Ding, Y., ‘Simple-invariants for \({GL}_n\) ’, Trans. Amer. Math. Soc.372(11) (2019), 7993-8042. · Zbl 1446.11106
[19] Emerton, M., ‘ \(p\) -adic \(L\) -functions and unitary completions of representations of \(p\) -adic reductive groups’, Duke Math. J.130(2) (2005), 353-392. · Zbl 1092.11024
[20] Fornea, M. and Gehrmann, L., ‘Plectic Stark-Heegner points’, Adv. Math.414 (2023), Article 108861. · Zbl 1525.11049
[21] Gehrmann, L., ‘On Shalika models and p-adic L-functions’, Isr. J. Math.226(1) (2018), 237-294. · Zbl 1414.11062
[22] Gehrmann, L., ‘Derived Hecke algebra and automorphic L-invariants’, Trans. Amer. Math. Soc.372(11) (2019), 7767-7784. · Zbl 1472.11141
[23] Gehrmann, L., ‘Functoriality of automorphic \(L\) -invariants and applications’, Doc. Math.24 (2019), 1225-1243. · Zbl 1469.11106
[24] Gehrmann, L., ‘Automorphic L-invariants for reductive groups’, J. Reine Angew. Math.2021(779) (2021), 57-103. · Zbl 1482.11076
[25] Gehrmann, L. and Rosso, G.. ‘Big principal series, \(p\) -adic families and -invariants’, Compos. Math.158(2) (2022), 409-436. · Zbl 1500.11041
[26] Grothendieck, A., ‘Sur quelques points d’algèbre homologique, I’, Tohoku Math. J.9(2) (1957), 119 - 221. · Zbl 0118.26104
[27] Hansen, D., ‘Universal eigenvarieties, trianguline Galois representations, and \(p\) -adic Langlands functoriality’, J. Reine Angew. Math.730 (2017), 1-64. With an appendix by James Newton. · Zbl 1425.11117
[28] Harder, G., ‘Eisenstein cohomology of arithmetic groups. the case GL2’, Invent. Math.89(1) (1987), 37-118. · Zbl 0629.10023
[29] Januszewski, F., ‘Rational structures on automorphic representations’, Math. Ann.370(3-4) (2018), 1805-1881. · Zbl 1403.11042
[30] Kohlhaase, J., ‘The cohomology of locally analytic representations’, J. Reine Angew. Math.651 (2011), 187-240. · Zbl 1226.22020
[31] Kohlhaase, J. and Schraen, B., ‘Homological vanishing theorems for locally analytic representations’, Math. Ann.353(1) (2012), 219-258. · Zbl 1259.22012
[32] Orlik, S., ‘On extensions of generalized Steinberg representations’, J. Algebra293(2) (2005), 611-630. · Zbl 1080.22008
[33] Orton, L., ‘An elementary proof of a weak exceptional zero conjecture’, Canad. J. Math.56 (2004), 373-405. · Zbl 1060.11030
[34] Rotger, V. and Seveso, M., ‘L-invariants and Darmon cycles attached to modular forms. J. Eur. Math. Soc. (JEMS)14(6) (2012), 1955-1999. · Zbl 1292.11069
[35] Saito, T.. ‘Hilbert modular forms and \(p\) -adic Hodge theory’, Compos. Math.145(5) (2009), 1081-1113. · Zbl 1259.11060
[36] Schneider, P. and Stuhler, U., ‘Resolutions for smooth representations of the general linear group over a local field’, J. Reine Angew. Math.436 (1993), 19-32. · Zbl 0780.20026
[37] Schraen, B., ‘Représentations \(p\) -adiques de \({GL}_2(L)\) et Catégories Dérivées’, Isr. J. Math. 176 (2010), 307-361. · Zbl 1210.11066
[38] Seveso, M., ‘The Teitelbaum conjecture in the indefinite setting’, Amer. J. Math.135(6) (2013), 1525-1557. · Zbl 1288.11051
[39] Spieß, M., ‘On special zeros of p-adic L-functions of Hilbert modular forms’, Invent. Math.196(1) (2014), 69-138. · Zbl 1392.11027
[40] Spieß, M., ‘On L-invariants associated to Hilbert modular forms’, Preprint, 2020.
[41] Teitelbaum, J., ‘Values of p-adic L-functions and a p-adic Poisson kernel’, Invent. Math.101(2) (1990), 395-410. · Zbl 0731.11065
[42] Urban, E., ‘Eigenvarieties for reductive groups’, Ann. of Math.174(3) (2011), 1685-1784. · Zbl 1285.11081
[43] Xie, B., ‘On noncritical Galois representations’, J. Inst. Math. Jussieu22(1) (2021), 1-38.
[44] Zhang, Y., ‘L-invariants and logarithm derivatives of eigenvalues of Frobenius’, Sci. China Math.57(8) (2014), 1587-1604. · Zbl 1323.11096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.