×

The cohomology of locally analytic representations. (English) Zbl 1226.22020

This paper develops a cohomology theory for locally analytic representations of \(p\)-adic Lie groups on non-Archimedean locally convex vector spaces.
Let \(\mathbb Q_p \subseteq L \subseteq K\), where \(L/\mathbb Q_p\) is a finite extension and \(K\) is spherically complete. Let \(H\) be a finite-dimensional locally \(L\)-analytic group. Let \(D(H)=D(H,K)\) denote the \(K\)-algebra of locally analytic \(K\)-valued distributions on \(H\). Denote by \({\mathcal M}_H\) the category of complete Hausdorff locally convex \(K\)-vector spaces with the structure of a separately continuous \(D(H)\)-module. For each pair of objects \(V\) and \(W\) of \({\mathcal M}_H\), the author defines relative extension groups \({\mathcal E}xt^q_H(V,W)\), torsion groups \({\mathcal T}or^q_H(V,W)\), locally analytic cohomology groups \(H^q_{\text{an}}(H,V)\) and locally analytic homology groups \(H_q^{\text{an}}(H,V)\). The author gives versions of Pontrjagin duality, Shapiro’s lemma and a Hochschild-Serre spectral sequence.
The first application is the following definition of a supercuspidal locally analytic representation. Let \(G\) be a connected reductive \(L\)-group. A topologically irreducible locally analytic \(G\)-representation \(V\) is called supercuspidal if for all proper parabolic subgroups \(P\) of \(G\) and all \(q \geq 0\) we have \(H_q^{\text{an}}(N,V)=0\), where \(N\) denotes the unipotent radical of \(P\).
In addition, the author studies extensions between locally analytic principal series representations.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: DOI

References:

[1] Berger L., Astérisque 319 pp 330– (2008)
[2] DOI: 10.1007/BF02684375 · Zbl 0145.17402 · doi:10.1007/BF02684375
[3] DOI: 10.1007/BF02715545 · Zbl 0254.14018 · doi:10.1007/BF02715545
[4] DOI: 10.2307/1970833 · Zbl 0272.14013 · doi:10.2307/1970833
[5] DOI: 10.1007/BF02715544 · Zbl 0254.14017 · doi:10.1007/BF02715544
[6] DOI: 10.1007/BF01389727 · Zbl 0297.20060 · doi:10.1007/BF01389727
[7] Grothendieck A., Mem. AMS pp 16– (1966)
[8] Gruson L., Ann. Sci. E’c. Norm. Sup. 1 (4) pp 45– (1968)
[9] DOI: 10.1017/S1474748005000228 · Zbl 1096.22009 · doi:10.1017/S1474748005000228
[10] DOI: 10.1215/S0012-7094-07-13712-8 · Zbl 1133.11066 · doi:10.1215/S0012-7094-07-13712-8
[11] DOI: 10.2307/1970237 · Zbl 0134.03501 · doi:10.2307/1970237
[12] Koszul J.-L., Bull. Soc. Math. France 78 pp 65– (1950)
[13] Lazard M., Publ. Math. IHE’S 26 pp 5– (1965)
[14] Morita Y., Adv. Stud. Pure Math. 7 pp 185– (1985)
[15] DOI: 10.1112/S0010437X08003825 · Zbl 1160.22009 · doi:10.1112/S0010437X08003825
[16] DOI: 10.1090/S1088-4165-01-00109-1 · Zbl 1028.17007 · doi:10.1090/S1088-4165-01-00109-1
[17] Schneider P., Docum. Math. 6 pp 447– (2001)
[18] Schneider P., J. AMS 15 pp 443– (2002)
[19] DOI: 10.1007/s00222-002-0284-1 · Zbl 1028.11070 · doi:10.1007/s00222-002-0284-1
[20] DOI: 10.1090/S1088-4165-05-00277-3 · Zbl 1146.22301 · doi:10.1090/S1088-4165-05-00277-3
[21] DOI: 10.1007/BF01393837 · Zbl 0781.22011 · doi:10.1007/BF01393837
[22] Symonds P., Progr. Math. 184 pp 349– (2000)
[23] DOI: 10.1016/0001-8708(72)90016-3 · Zbl 0271.46040 · doi:10.1016/0001-8708(72)90016-3
[24] Tits J., Proc. Symp. Pure Math. 33 pp 29– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.